As proved by W.K. Nicholson

Preliminaries

- *R* will denote a non trivial associative ring with unity.
- If X, Y are additive subgroups of R, we define their product by

$$A > \exists XY = \left\{ \sum_{i=1}^{n} x_i y_i \mid n \ge 1, x_i \in X, y_i \in Y \right\}.$$

- We call *R* semiprime if $A^2 \neq 0$ for every nonzero ideal *A* in *R*.
- *R* is *simple* if it has no ideals other than O and *R*. Such a ring is necessarly semiprime.
- We say that *R* is *left artinian* if for every descending chain of left ideals $K_1 \supset K_2 \supset \cdots$, there is an *n* such that $K_n = K_{n+1} = \cdots$. This is equivalent to every nonempty family of left ideals having a minimal member.

If *R* is a semiprime left artinian ring then.

$$R \cong M_{n_1}(D_1) \times M_{n_2}(D_2) \times \cdots \times M_{n_r}(D_r)$$

where each D_i is a division ring and $M_n(D)$ denote the ring of $n \times n$ matrices over D.

Proof outline

We'll first prove that if *R* is simple with a minimal left ideal, then $R \cong M_n(D)$ (Wedderburn). Then we'll prove a key lemma that will allow us to reduce our theorem to reapeted uses of Wedderburn's Theorem.

Wedderbun Theorem

<u>}≠k 0,</u>k

Brauer's Lemma.

Let *K* be a minimal left ideal of a ring *R*, such that $K^2 \neq 0$. Then K = Re where $e^2 = e \in R$ and eRe is a division ring.

Proof.

Since $K^2 \neq 0$, certainly $Ku \neq 0$ for some $0 \neq u \in K$. Hence Ku = K by minimality, so eu = u for some $e \in K$. $V \subseteq K = K \cdot V$ ev = VNow note that for $r \in K$, $re - r \in L = \{a \in K \mid au = 0\}$; since $L \subset K$ is a left ideal and $L \neq K$, it follows that L = 0 and $e^2 = e$. Thus $e \in Re \subset RK \subset K$, so by minimality Re = K.

Wedderburn Theorem

Brauer's Lemma.

Let $0 \neq b \in eRe$, then $0 \neq eb \in Rb$ so $Rb \neq 0$, and $Rb = R(be) \subset Re$, thus by minimality Re = Rb, say e = rb. Hence $(ere)b = er(eb) = erb = e^2 = e$, so b has a left inverse in eRe. As for the right inverse, since ere must also have a left inverse $(ere)^*$: $(ere)^* = (ere)^*(ereb) = b$

it follows that $b(ere) = (ere)^*(ere) = e$, and eRe is a division Ring.

Wedderburn Theorem Corollary to Brauer's Lemma

Corollary.

Every nonzero left ideal in a semiprime, left artinian ring contains a nonzero idempotent.

Proof.

If $L \neq 0$ is a left ideal of R, the left artinian condition gives a minimal left ideal $K \subset L$. R is semiprime, thus $(KR)^2 \neq 0$, since KR is a non-zero ideal ($KRR \subset KR$, $RKR \subset KR$), so $0 \neq (KR)^2 = KRKR \subset KKR = K^2R$, and we have $K^2 \neq 0$. Hence Brauer's lemma applies.

Wedderburn's Theorem.

If *R* is a simple ring with a minimal left ideal, then $\underline{R \cong M_n(D)}$ for some division ring *D*.

Proof.

Let <u>K</u> be a minimal left ideal. Since R is simple, it is semiprime and by the same argument as above $K^2 \neq 0$, so by Brauer's lemma K = Rewhere e is idempontent and D = eRe is a division ring.

Then K is a right D-module and, if $r \in R$, the map $\alpha_r : K \longrightarrow K$ given by $\alpha_r(k) = rk$ is a D-linear transformation.

$$d_{r}(k_{1}+k_{2}) = r(k_{1}+k_{2}) = d_{r}(k_{1}) + d_{r}(k_{2})$$

 $d_{r}(k_{3}) = r k_{d} = d_{r}(k) d$

Wedderburn Theorem

Hence $\rho : R \to end_D K$ defined by $r \to \alpha_r$ is a ring homomorphism: $\rho(x + y)(k) = \alpha_{x+y}(k) \qquad \rho(xy)(k) = \alpha_{xy}(k)$ $= (x + y)(k) \qquad = xyk$ $= \alpha_x(k) + \alpha_y(k) \qquad = \alpha_x(\alpha_y(k))$ $= (\rho(x) + \rho(y))(k) \qquad = (\rho(x) \circ \rho(y))(k)$

Now we will show that this is in fact an isomporhism. Note that if $\alpha_r(k) = 0$ for all $k \in K$, then rK = rRe = 0, so rR = rReR = 0 implies r = 0, thus ρ is injective. $\checkmark r(k) = 0 = rk$ $\rho \neq ReR = R$

Wedderburn Theorem

To see that ρ is surjective, write $1 \in \underline{R} = \underline{ReR}$ as $1 = \sum_{i=1}^{n} \underline{r_i e s_i}$. Given $\alpha \in \operatorname{end}_D K$, let $t = \sum_{i=1}^{n} \alpha(\underline{r_i e}) e s_i$. Then the *D*-linearity of α gives

 $\begin{array}{l} k = \mathbb{R}^{\mathbb{Z}} \\ \alpha(\underline{re}) = \alpha \left(\sum_{i=1}^{\infty} (r_i e s_i) r e \right) \end{array}$ $\gamma_i e^{\gamma_i} \gamma_i e^{-\sum_i \alpha([\underline{r}_i e][\underline{e}_i re])} e^{\frac{1}{2} \epsilon_i re}$ $=\sum \alpha(r_i e)es_i re$ = tre $= \alpha_t(re).$

Since this is true for all $re \in Re$, $\alpha = \alpha_t$ and it follows that $R \cong \operatorname{end}_D K$. de(k)=eRe=) Note that $e \in A$, where $A = \{x \in R \mid \dim_D \alpha_x(K) < \infty\},\$ thus A is a nonzero ideal and by simplicity A = R, in particular $1 \in A$ implies $\alpha_1(K) = K$ is finite dimensional, hence

 $R \cong \operatorname{end}_D K \cong M_{\dim_D K}(D).$

Weddernburn-Artin Theorem *Preliminaries*

Let *I* denote the set of idempotents in *R*. If $e, f \in I$, we write $e \leq f$ if ef = e = fe, i.e., if $eRe \subset fRf$. This is a partial ordering on *I* (with 0 and 1 as the least and greastest elements).

I is said to satisfy the *maximum condition* if every non-empty subset contains a maximal elements, that is, if $e_1 \le e_2 \le \cdots$ in *I* implies $e_n = e_{n+1} = \cdots$ for some $n \ge 1$. Analagously, *I* is said to satisfy the *minimal condition* if $e_1 \ge e_2 \ge \cdots$ in *I* implies $e_n = e_{n+1} = \cdots$ for some $n \ge 1$. A set of idempotents is called *orthogonal* if $e_f = 0$ for all $e \ne f$ in the set.

Lemma.

The following are equivalent for a ring *R*:

- (1) *R* has maximum condition on idempotents.
- (2) *R* has minimum condition on idempotents.
- (3) *R* has maximum condition on left ideals $Re, e^2 = e$.
- (4) R has minimum condition on left ideals $Re, e^2 = e$.
- (5) R contains no infinite orthogonal set of idempotents.

Steps.

We will prove (1) \iff (2), (3) \iff (4), (1) \implies (3) \implies (5) \implies (1).

Wedderburn-Artin Theorem Lemma (1) \iff (2)

Proof.

Let us first note that, if $e \leq f$, we have

$$(1-f)(1-e) = 1-e-f+fe = 1-f,$$

$$(1-e)(1-f) = 1-e-f+fe = 1-f.$$

Thus $1 - f \le 1 - e$ and the converse easily follows from the previous equalities. If $e_1 \ge e_2 \ge \cdots$ in *I* implies $e_n = e_{n+1} = \cdots$ for some $n \ge 1$, the above statement can be used to see that

eら=e=.

$$1-e_1 \leq 1-e_2 \leq \cdots \implies 1-e_n = 1-e_{n+1} = \cdots$$

This proves (1) \iff (2). $|-1| - (1-\frac{1}{2}) - 1$

Thus a ascending chain can be turned to an descending one. This proves (3) \iff (4).

Wedderburn-Artin Theorem Lemma (1) \implies (3) $Rei \subset RC$

If $Re_1 \subset Re_2 \subset \cdots$ where $e_i^2 = e_i$ for each *i*, then $e_i e_i = e_i$ for all $j \ge i$. Inductively construct idempotents $f_1 \le f_2 \le \cdots$ as f; ERCin $f_1 = e_1$ $f_{i+1} = f_i + e_{i+1} - e_{i+1}f_i$ Note that if $f_i \in Re_i$, then $f_{i+1} \in Re_{i+1}$, thus $f_i \in Re_i$ for all i and $f_i e_k = f_i$ for $k \ge i$. Moreover if $f_i^2 = f_i$ $f_{i+1}^2 = f_i^2 + f_{i}e_{i+1} - f_ie_{i+1}f_i + e_{i+1}f_i + \frac{e_{i+1}^2 - e_{i+1}^2}{e_{i+1}^2 - e_{i+1}^2}f_i$ $-e_{i+1}f_i^2 - e_{i+1}f_ie_{i+1} + e_{i+1}f_ie_{i+1}f_i$ $=f_i + e_{i+1} - e_{i+1}f_i$

Wedderburn-Artin Theorem lemma (1) \implies (3)

Finally note that

$$f_i f_{i+1} = f_i^2 + f_i e_{i+1} - f_i e_{i+1} f_i = f_i$$

$$f_{i+1} f_i = f_i^2 + e_{i+1} f_i - e_{i+1} f_i^2 = f_i$$

in other words $f_i \leq f_{i+1}$. Thus (1) implies that $f_n = f_{n+1} = \cdots$ for some *n* and hence that $e_{i+1} = e_{i+1}f_i \in Re_i$ for $i \geq n$. It follows that $Re_n = Re_{n+1} = \cdots$. The maxium condition on right ideals is proved analogously by taking $f_{i+1} = f_i + e_{i+1} - f_i e_{i+1}$ instead. Wedderburn-Artin Theorem Lemma (3) \implies (5) $\operatorname{Re}_{\mathcal{L}} \operatorname{Re}_{\mathcal{L}}^{\mathcal{L}}$

By contrapositive suppose we have an infinite orthogonal set of distinct idempotents $\{e_n\}$. Construct $f_n = \sum_{k=1}^n e_k$, then for m < n

$$\mathcal{C}_{k}\mathcal{C}_{k} = \left(\sum_{k=1}^{m} e_{k}\right) \left(\sum_{k=1}^{n} e_{k}\right) = \sum_{k=1}^{m} \mathcal{C}_{k} = f_{m}$$

$$\mathcal{R}_{f_{1}} \subset \mathcal{R}_{f_{2}} \subset \cdots \qquad \mathcal{R}_{f_{n},n} = \mathcal{R}_{f_{n}}$$

Thus $f_n^2 = f_n$ and $Rf_n \subset Rf_{n+1}$. Note that if $f_{n+1} \in Rf_n$, then $f_{n+1} = rf_n$ and $f_n = f_{n+1}f_n = rf_n^2 = f_{n+1}$ implies $e_{n+1} = 0$, thus $f_{k+1} \in Rf_k$ at most once because $\{e_n\}$ are distinct, it follows that $Rf_1 \subset Rf_2 \subset \cdots$ does not terminate.

$$e_{1} + \cdots + e_{n+1} = e_{1} + \cdots + e_{n+1}$$

 $e_{n+1} = 0$ 15/23

Wedderburn-Artin Theorem Lemma (5) \implies (1)

Suppose that $e_1 \le e_2 \le \cdots$ does not end. Construct $f_1 = e_1$, and $f_{n+1} = e_{n+1} - \sum_{k=1}^{n} f_k$. By induction we prove $\{f_i\}_i$ is idempotent and orthogonal. $\{f_1\}_{i=1}^n$ is an idempotent and orthogonal set, then

$$f_{n+1}^{2} = \left(e_{n+1} - \sum_{k=1}^{n} f_{k}\right)^{2} \qquad \begin{array}{c} c_{j}f_{k} = f_{k} = f_{k} = f_{k} \\ c_{j}f_{k} = f_{k} = f_{k} \\ c_{j}f_{k} = f_{k} \\ c_{j}f_{k}$$

16/23

Wedderburn-Artin Theorem Lemma (5) \implies (1)

icn+1

 $f_{n+1}f_j = \left(e_{n+1} - \sum_{k=1}^n f_k\right)(f_j)$ $= \underbrace{e_{n+1}f_j}_{k=1} - \sum_{k=1}^n f_kf_j$ $= f_j - f_j^2$ = 0

We have thus constructed an infinite orthogonal set of idempotents. By contrapositive (5) \implies (1).

If *R* is a semiprime left artinian ring then.

$$R \cong M_{n_1}(D_1) \times M_{n_2}(D_2) \times \cdots \times M_{n_r}(D_r)$$

where each D_i is a division ring and $M_n(D)$ denote the ring of $n \times n$ matrices over D.

Proof.

Let K be a minimal left ideal, let S = KR and let $M = \{a \in R \mid Sa = 0\}$. Then S is an ideal because K is a left ideal and M is an ideal because for all $r_1, r_2 \in R$ if $a \in M$, $S(r_1ar_2) \subset S(ar_2) = 0$. We then claim

 $R \cong S \times M$

First note $S \cap M = 0$ because *R* is semiprime and $(S \cap M)^2 \subset SM = 0$. Define $\rho: S \times M \to R$ by $(s, m) \mapsto s + m$, this is an homomorphism:

5=-m

Since $S \cap M = 0$, if $\rho(s, m) = s + m = 0$ then s = m = 0, hence ρ is injective.

Now let $e \in S$ be a maximal idempotent (which exists by our lemma), note that r = re + r(1 - e), thus for surjectivity it's enough to show $1 - e \in M$. $\zeta_{a} = 0$

If this is not the case, then $S(1-e) \neq 0$ and by the corollary to Brauer's lemma there is a nonzero idempotent $f \in S(1-e)$. Then f = s(1-e) means $f(1-e) = s(1-e)^2 = s(1-e) = f$, thus fe = 0.

fe=2

Let g = e + f - ef, we see that $g^2 = e^2 + ef - e^2 f + f e + f^2 - f ef - ef e - ef^2 + ef ef = g$ is an idempotent in S, furtheremore $e \le g$:

$$eg = e^{2} + e^{f} - e^{2}f = e$$
$$ge = e^{2} + fe - e^{f}e = e$$

thus by the maximality of e, we must have e = g = e + f - ef, so f = ef, however $f = f^2 = fef = 0$ is a contradiction. So $1 - e \in M$ and $R \cong S \times M$.

Since
$$1 = s_1 + m_1$$
, we have
 1
 $s_1 s = (s_1 + m_1)s = s_1 = s(s_1 + m_1) = s_1$
 $m_1 m = (s_1 + m_1)m = m = m(s_1 + m_1) = mm_1$

shows that S and M are rings with unity, moreover $s_1 = e$ and $m_1 = 1 - e$, by the maximality of e in S. SLCL If L is a left ideal of S, then $RL \cong (S \times M) (L \times 0) \cong SL \subset L$, and the same is true for M, this means that left ideal of S and M are left ideals of R, so they inherit the hypotheses on R.

ARCA ARCK

Now we'll show that S is simple. If $0 \neq A \subset S$ is an ideal, then $AK \subset A$ and $AK \subset K$ tells us that $0 \neq A^2 \subset AS = AKR \subset (A \cap K)R$, recordsolver Othus $A \cap K \neq 0$ and the minimality of K gives $K \subset A$, whence $S = KR \subset AR \subset A$. S = A $R \simeq S \times O$

Finally if M = 0 the proof is complete by Wedderburn's theorem. Otherwise we can repeat this process with *R* replaced by *M* to get $R \cong S \times S_1 \times M_1$, where S_1 is simple. This cannot continue indefinitely by the artinian hypothesis, so Wedderburn's theorem completes the proof.

 $S \simeq M_n(D)$