The Wedderburn-Artin Theorem

As proved by W.K. Nicholson

Preliminaries

- R will denote a non trivial associative ring with unity.
- If X, Y are additive subgroups of R, we define their product by

$$
A \searrow=X Y=\left\{\sum_{i=1}^{n} x_{i} y_{i} \mid n \geq 1, x_{i} \in X, y_{i} \in Y\right\} .
$$

- We call R semiprime if $A^{2} \neq 0$ for every nonzero ideal A in R.
- R is simple if it has no ideals other than 0 and R. Such a ring is necessarly semiprime.
- We say that R is left artinian if for every descending chain of left ideals $K_{1} \supset K_{2} \supset \cdots$, there is an n such that $K_{n}=K_{n+1}=\cdots$. This is equivalent to every nonempty family of left ideals having a minimal member.

Wedderburn-Artin Theorem

If R is a semiprime left artinian ring then.

$$
R \cong M_{n_{1}}\left(D_{1}\right) \times M_{n_{2}}\left(D_{2}\right) \times \cdots \times \underline{M_{n_{r}}\left(D_{r}\right)}
$$

where each D_{i} is a division ring and $M_{n}(D)$ denote the ring of $n \times n$ matrices over D.

Proof outline

We'll first prove that if R is simple with a minimal left ideal, then $R \cong M_{n}(D)$ (Wedderburn). Then we'll prove a key lemma that will allow us to reduce our theorem to reapeted uses of Wedderburn's Theorem.

Wedderbun Theorem

$$
\rangle \neq k \quad 0, k
$$

Brauer's Lemma.

Let K be a minimal left ideal of a ring R, such that $K^{2} \neq 0$. Then $K=R e$ where $e^{2}=e \in R$ and $e R e$ is a division ring.

Proof.

Since $K^{2} \neq 0$, certainly $\overline{K u \neq 0}$ for some $0 \neq u \in K$. Hence $K u=K$ by minimality, so $e u=u$ for some $e \in K$.

$$
v e k=k v \quad e v=v
$$

Now note that for $\underset{\sim}{r} \in K, r e-r \in L=\{a \in K$ rau $=0\}$; since $L \subset K$ is a left ideal and $L \neq K$, it follows that $L=0$ and $e^{2}=e$. Thus
$-e \in \operatorname{Re} \subset R K \subset K$, so by minimality $R e=K$.

$$
e^{2}=l
$$

Wedderburn Theorem

Brauer's Lemma.

$$
e^{2}=0
$$

Let $0 \neq b \in e R e$, then $0 \neq e b \in R b$ so $R b \neq 0$, and

$R b=R(\overline{b e}) \subset R e$, thus by minimality $R e=R b$, say $e=r b$. Hence $\overline{(\text { ere }) ~} b=\operatorname{er}(e b)=\operatorname{erb}=e^{2}=e$, so b has a left inverse in eRe. As for the right inverse, since ere must also have a left inverse (ere)*:

it follows that $b($ ere $)=(e r e)^{*}(e r e)=e$, and $e R e$ is a division Ring.

Wedderburn Theorem

Corollary to Brauer's Lemma

Corollary.

Every nonzero left ideal in a semiprime, left artinian ring contains a nonzero idempotent.

Proof.

If $L \neq 0$ is a left ideal of R, the left artinian condition gives a minimal left ideal $K \subseteq L$. R is semiprime, thus $(K R)^{2} \neq 0$, since $K R$ is a non-zero ideal ($K R R \subset K R, R K R \subset K R$), so
$0 \neq(K R)^{2}=K R K R \subset K K R=K^{2} R$, and we have $K^{2} \neq 0$. Hence Brauer's lemmăa applies.

$$
K=R e
$$

Wedderburn's Theorem.

If R is a simple ring with a minimal left ideal, then $R \cong M_{n}(D)$ for some division ring D.

Proof.

Let K be a minimal left ideal. Since R is simple, it is semiprime and by the same argument as above $K^{2} \neq 0$, so by Brauer's lemma $K=R e$ where e is idempontent and $D=e$ Re is a division ring.

Then K is a right D-module and, if $\underline{L} \in R$, the map $\alpha_{r}: K \rightarrow K$ given by $\alpha_{r}(k)=r k$ is a D-linear transformation.

$$
\begin{aligned}
& \alpha_{r}\left(k_{1}+k_{2}\right)=r\left(k_{1}+k_{2}\right)=\alpha_{r}\left(k_{1}\right)+\alpha_{r}\left(k_{2}\right) \\
& \alpha_{r}\left(k_{d}\right)=r k_{d}=\alpha_{r}(k) d
\end{aligned}
$$

Wedderburn Theorem

Hence $\rho:{ }_{R}^{\vee} \rightarrow$ end $_{\sim}^{\prime} K$ defined by $r \rightarrow \stackrel{\alpha_{\alpha}}{\alpha_{r}}$ is a ring homomorphism:

$$
\rho(x+y)(k)=\alpha_{x+y}(k) \quad \rho(x y)(k)=\alpha_{x y}(k)
$$

$$
=(x+y)(k)
$$

$$
=x y k
$$

$$
=\alpha_{x}(k)+\alpha_{y}(k)
$$

$$
=\alpha_{x}\left(\alpha_{y}(k)\right)
$$

$$
=(\rho(x)+\rho(y))(k)
$$

$$
=\underbrace{(\rho(x) \circ \rho(y))(k)}
$$

Now we will show that this is in fact an isomporhism. Note that if $\alpha_{r}(k)=0$ for all $k \in K$, then $r \underline{r}=r R E=0$, so $r R=r \operatorname{ReR}=0$ implies
$r=0$, thus ρ is injective.

$$
\alpha_{r}(k)=0=r k_{o \neq} \operatorname{ReR}=R
$$

Wedderburn Theorem

To see that ρ is surjective, write $1 \in R=R \check{R} R$ as $1=\sum_{i=1}^{n} r_{i} e s_{j}$. Given $\alpha \in \operatorname{end}_{D} K$, let $t=\sum_{i=1}^{n} \alpha\left(r_{i} e\right) e s_{\underline{i}}$. Then the D-linearity of α gives

$$
\begin{aligned}
& k=R e \\
& \alpha(r \underline{e})=\alpha\left(\sum_{i}\left(r_{i} e s_{i}\right) r e\right)
\end{aligned}
$$

Since this is true for all re $\in \operatorname{Re}, \alpha=\alpha_{t}$ and it follows that $R \cong$ end $_{D} K$.
Note that $e \in A$, where $\quad \alpha_{e}(k)=e \operatorname{Re}=0$
$r_{i} e^{2} \xi_{i} \vee e=\sum_{i} \alpha\left(\left[r_{i} e\right]\left[\underset{e R e}{\left[e s_{i} r e\right]}\right) \xrightarrow[\text { eRe }]{A=\left\{x \in R \mid \operatorname{dim}_{D} \alpha_{x}(K)<\infty\right\}}\right.$ thus A is a nonzero ideal and by sim
$=\sum_{i} \alpha\left(r_{i} e\right) e s_{i} r e$
$=$ tre
$=\alpha_{t}(r e)$. plicity $A=R$, in particular $1 \in A$ implies $\alpha_{1}(K)=\underline{K}$ is finite dimensional, hence

$$
R \cong e_{D d_{D}} K \cong M_{\operatorname{dim}_{D} K}(D)
$$

Weddernburn-Artin Theorem

Preliminaries

Let I denote the set of idempotents in R. If $e, f \in I$, we write $e \leq f$ if $e f=e=f e$, i.e., if $e R e \subset f R f$. This is a partial ordering on I (with 0 and 1 as the least and greastest elements).

I is said to satisfy the maximum condition if every non-empty subset contains a maximal elements, that is, if $e_{1} \leq e_{2} \leq \cdots$ in I implies $e_{n}=e_{n+1}=\cdots$ for some $n \geq 1$. Analagously, l is said to satisfy the minimal condition if $e_{1} \geq e_{2} \geq \cdots$ in I implies $e_{n}=e_{n+1}=\cdots$ for some $n \geq 1$. A set of idempotents is called orthogonal if ef $=0$ for all $e \neq f$ in the set.

Wedderburn-Artin Theorem

Lemma.

The following are equivalent for a ring R :
(1) R has maximum condition on idempotents.
(2) R has minimum condition on idempotents.
(3) R has maximum condition on left ideals $R e, e^{2}=e$.
(4) R has minimum condition on left ideals $R e, e^{2}=e$.
(5) R contains no infinite orthogonal set of idempotents.

Steps.

We will prove (1) \Longleftrightarrow (2), (3) \Longleftrightarrow (4),
$(1) \Longrightarrow(3) \Longrightarrow(5) \Longrightarrow$ (1).

Wedderburn-Artin Theorem

Lemma (1)

 (2)

Proof.

Let us first note that, if $e \leq f$, we have

$$
\left\{\left\{\begin{array}{l}
(1-f)(1-e)=1-k-f+f k=1-f, \\
(1-e)(1-f)=1-k-i+f i=1-f .
\end{array}\right.\right.
$$

Thus $1-f \leq 1-e$ and the converse easily follows from the previous equalities. If $e_{1} \geq e_{2} \geq \cdots$ in I implies $e_{n}=e_{n+1}=\cdots$ for some $n \geq 1$, the above statement can be used to see that

$$
1-e_{1} \leq 1-e_{2} \leq \cdots \Longrightarrow 1-e_{n}=1-e_{n+1}=\cdots
$$

This proves $(1) \Longleftrightarrow$ (2).

Wedderburn-Artin Theorem

Lemma (3) \Longleftrightarrow (4)

Similarly to the previous proof, note that

$$
\begin{aligned}
R e \subset R f & \Longleftrightarrow e f=e \quad \lambda R e=R(C P) C K F \\
& \Longleftrightarrow(1-e)(1-f)=1-f \\
& \Longleftrightarrow(1-f) R \subset(1-e) R .
\end{aligned}
$$

Thus a ascending chain can be turned to an descending one. This proves $(3) \Longleftrightarrow$ (4).

Wedderburn-Artin Theorem

Lemma (1) \Longrightarrow (3)

If $R e_{1} \subset R e_{2} \subset \cdots$ where $e_{i}^{2}=e_{i}$ for each i, then $e_{i} e_{j}=e_{i}$ for all $j \geq i$. Inductively construct idempotents $f_{1} \leq f_{2} \leq \cdots$ as

$$
\begin{gathered}
f_{1}=e_{1} \\
f_{i} \div 1=f_{i}+e_{i+1}-e_{i+1} f_{i}
\end{gathered}
$$

Note that if $f_{i} \in R e_{i}$, then $f_{i+1} \in R e_{i+1}$, thus $f_{i} \in R e_{i}$ for all i and $f_{i} e_{k}=f_{i}$ for $k \geq i$. Moreover if $f_{i}^{2}=f_{i}$

$$
\begin{aligned}
f_{i+1}^{2}= & f_{i}^{2}+f_{i} f_{i+1}-f_{i} e_{i} f_{1} f_{i}+e \cdot f_{1} f_{i}+e_{i+1}^{2}-e^{p} / f_{1} f_{i} \\
& -e_{i+1} f_{i}^{2}-e_{i+1} f_{i} e_{i+1}+e_{i+1} f_{i} e_{i} f_{1+1} f_{i} \\
= & f_{i}+e_{i+1}-e_{i+1} f_{i}
\end{aligned}
$$

Wedderburn-Artin Theorem

lemma (1) \Longrightarrow (3)

Finally note that

$$
\begin{aligned}
f_{i} f_{i+1} & =f_{i}^{2}+f_{i} \varepsilon_{i+1}-f_{i} s_{i+1} f_{i}=f_{i} \\
f_{i+1} f_{i} & =f_{i}^{2}+e_{i+1}-f_{i}-e_{i}+1 T_{i}^{2}=f_{i}
\end{aligned}
$$

in other words $f_{i} \leq f_{i+1}$. Thus (1) implies that $f_{n}=f_{n+1}=\cdots$ for some n and hence that $e_{i+1}=e_{i+1} f_{i} \in R e_{i}$ for $I \geq n$. It follows that $R e_{n}=R e_{n+1}=\cdots$.
The maxium condition on right ideals is proved analogously by taking $f_{i+1}=f_{i}+e_{i+1}-f_{i} e_{i+1}$ instead.

Wedderburn-Artin Theorem

Lemma (3) \Longrightarrow (5)

Rel .C. $R_{2} C$

By contrapositive suppose we have an infinite orthogonal set of distinct idempotent $\left\{e_{n}\right\}$. Construct $f_{n}=\sum_{k=1}^{n} e_{k}$, then for $m<n$
$e_{k} e_{k} \lambda^{f_{m} f_{n}=\left(\sum_{k=1}^{m} e_{k}\right)\left(\sum_{k=1}^{n} e_{k}\right)=\sum_{k=1}^{m} e_{k}^{2}=f_{m}} \begin{aligned} & \text { R } f_{1} C f_{z} C \cdots\end{aligned}$ $R f_{n+1}=R f_{n}$
Thus $f_{n}^{2}=f_{n}$ and $R f_{n} \subset R f_{n+1}$. Note that if $f_{n+1} \in R f_{n}$, then $f_{n+1}=r f_{n}$ and $f_{n}=f_{n+1} f_{n}=r f_{n}^{2}=f_{n+1}$ implies $e_{n+1}=0$, thus $f_{k+1} \in R f_{k}$ at most once because $\left\{e_{n}\right\}$ are distinct, it follows that $R f_{1} \subset R f_{2} \subset \cdots$ does not terminate.

$$
e_{n}=e_{1}+\cdots+e_{n+1}
$$

Wedderburn-Artin Theorem
Lemma (5) \Longrightarrow (1)
Suppose that $e_{1} \leq e_{2} \leq \cdots$ does not end. Construct $f_{1}=e_{1}$, and $f_{n+1}=e_{n+1}-\sum_{k=1}^{n} f_{k}$. By induction we prove $\left\{f_{i}\right\}_{i}$ is idempotent and orthogonal. $\left\{f_{1}\right\}$ is idempotent and orthogonal, so suppose $\left\{f_{i}\right\}_{i=1}^{n}$ is an idempotent and orthogonal set, then

$$
\begin{aligned}
f_{n+1}^{2} & =\left(\underline{\left(e_{n+1}-\sum_{k=1}^{n} f_{k}\right)^{2}} \quad e_{j} f k=f_{k}=f k\right. \\
& =e_{n+1}^{2}-\underbrace{e_{k=1}^{n}}_{n+1} f_{k}-\sum_{k=1}^{n} f_{k} e_{n+1}+\left(\underline{\left.\sum_{k=1}^{n} f_{k}\right)^{2}}\right. \\
& =e_{n+1}-f \sum_{k=1}^{n} f_{k}+\sum_{k=1}^{n} f_{k}^{2} \quad\left(e_{n+1} f_{k}=f_{k}\right) \\
& =f_{n+1}
\end{aligned}
$$

Wedderburn-Artin Theorem

Lemma (5) \Longrightarrow (1)

$$
\begin{aligned}
j & <n+1 \\
f_{n+1} f_{j} & =\left(e_{n+1}-\sum_{k=1}^{n} f_{k}\right)\left(f_{j}\right) \\
& =e_{n+1} f_{j}-\sum_{k=1}^{n} f_{k} f_{i} \\
& =f_{j}-f_{j}^{2} \\
& =0
\end{aligned}
$$

We have thus constructed an infinite orthogonal set of idempotents. By contrapositive (5) \Longrightarrow (1).

Wedderburn-Artin Theorem

If R is a semiprime left artinian ring then.

$$
R \cong M_{n_{1}}\left(D_{1}\right) \times M_{n_{2}}\left(D_{2}\right) \times \cdots \times M_{n_{r}}\left(D_{r}\right)
$$

where each D_{i} is a division ring and $M_{n}(D)$ denote the ring of $n \times n$ matrices over D.

Proof.

Let K be a minimal left ideal, let $S=K R$ and let $M=\{a \in R \mid S a=0\}$. Then S is an ideal because K is a left ideal and M is an ideal because for all $r_{1}, r_{2} \in R$ if $a \in M$, $S\left(r_{1} a r_{2}\right) \subset S\left(a r_{2}\right)=0$. We then claim

$$
R \cong S \times M
$$

Wedderburn-Artin Theorem

First note $S \cap M=0$ because R is semiprime and $(S \cap M)^{2} \subset S M=0$.
Define $\rho: S \times M \rightarrow R$ by $(s, m) \mapsto s+m$, this is an homomorphism:

$$
\begin{aligned}
\rho\left(\left(s_{1}, m_{1}\right)+\left(s_{2}, m_{2}\right)\right) & =\rho\left(s_{1}+s_{2}, m_{1}+m_{2}\right) \\
& =s_{1}+s_{2}+m_{1}+m_{2} \\
& =\rho\left(s_{1}, m_{1}\right)+\rho\left(s_{2}, m_{2}\right) \\
\rho\left(\left(s_{1}, m_{1}\right) \cdot\left(s_{2}, m_{2}\right)\right) & =\rho\left(s_{1} s_{2}, m_{1} m_{2}\right) \\
& =s_{1} s_{2}+m_{1} m_{2} \\
& =s_{1} s_{2}+s_{1} m_{2}+m_{1} s_{2}+m_{1} m_{2} \\
& =\rho\left(s_{1}, m_{1}\right) \rho\left(s_{2}, m_{2}\right) . \\
& \left(S, m_{0}\right)
\end{aligned}
$$

Wedderburn-Artin Thorem

$$
s=-m
$$

Since $S \cap M=0$, if $\rho(s, m)=s+m=0$ then $s=m=0$, hence ρ is injective.

$$
r e \in S
$$

Now let $e \in S$ be a maximal idempotent (which exists by our lemma), note that $r=r e+r(1-e)$, thus for surjectivity it's enough to show $1-e \in M$.

$$
s_{a}=0
$$

If this is not the case, then $S(1-e) \neq 0$ and by the corollary to Brauer's lemma there is a nonzero idempotent $f \in S(1-e)$. Then $f=s(1-e)$ means $f(1-e)=s(1-e)^{2}=s(1-e)=f$, thus $f e=0$.

$$
f-f e=f
$$

Wedderburn-Artin Thorem

$$
f e=0
$$

Let $g=e+f-e f$, we see that
$g^{2}=e^{2}+e f-e^{2} f+f e+f^{2}-f e f-$ efe $e f^{2}+e f e f=g$ is an idempotent in S , furtheremore $e \leq g$:

$$
\begin{aligned}
& e g=e^{2}+\ell f-\epsilon^{2} f=e \\
& g e=e^{2}+f \hat{e}-\epsilon f e=e
\end{aligned}
$$

thus by the maximality of e, we must have $e=g=e+f-e f$, so $f=e f$, however $f=f^{2}=f e f=0$ is a contradiction. So $1-e \in M$ and $R \cong S \times M$.

Wedderburn-Artin Theorem

Since $1=s_{1}+m_{1}$, we have

$$
\begin{aligned}
& 1 \\
& s_{1} s=\left(s_{1}+m_{1}\right) s=s=s\left(s_{1}+m_{1}\right)=s s_{1} \\
& m_{1} m=\left(s_{1}+m_{1}\right) m=m=m\left(s_{1}+m_{1}\right)=m m_{1}
\end{aligned}
$$

shows that S and M are rings with unity, moreover $s_{1}=e$ and $m_{1}=1-e$, by the maximality of e in S.

SLCL
OXL
If L is a left ideal of S, then $R L \cong(S \times M)(L \times 0) \cong S L \subset L$, and the same is true for M, this means that left ideal of S and M are left ideals of R, so they inherit the hypotheses on R.

Wedderburn-Artin Theorem

$$
A K C A \quad A K C K
$$

Now we'll show that S is simple. If $0 \neq A \subset S$ is an ideal, then $A K \subset A$ and $A K \subset K$ tells us that $0 \neq A^{2} \subset A S=A K R \subset(A \cap K) R,=0$ thus $A \cap K \neq 0$ and the minimality of K gives $K \subset A$, whence $S=K R \subset A R \subset A$.

$$
S=A
$$

$$
R \cong S \times 0
$$

Finally if $M=0$ the proof is complete by Wedderburn's theorem. Otherwise we can repeat this process with R replaced by M to get $R \cong S \times \widetilde{S_{1} \times M_{1}}$, where S_{1} is simple. This cannot continue indefinitely by the artinian hypothesis, so Wedderburn's theorem completes the proof.

$$
S \cong M_{n}(D)
$$

