
The Wedderburn-Artin Theorem

As proved by W.K. Nicholson



Preliminaries

• R will denote a non trivial associative ring with unity.

• If X, Y are additive subgroups of R, we define their product by

XY =

{︃ n∑︁
i=1

xiyi | n ≥ 1, xi ∈ X, yi ∈ Y

}︃
.

• We call R semiprime if A2 6= 0 for every nonzero ideal A in R.

• R is simple if it has no ideals other than 0 and R. Such a ring is
necessarly semiprime.

• We say that R is left artinian if for every descending chain of left
ideals K1 ⊃ K2 ⊃ · · · , there is an n such that Kn = Kn+1 = · · · .
This is equivalent to every nonempty family of left ideals having
a minimal member. 1/23



Wedderburn-Artin Theorem

If R is a semiprime left artinian ring then.

R ∼=Mn1(D1) × Mn2(D2) × · · · × Mnr(Dr)

where each Di is a division ring andMn(D) denote the ring of n× n
matrices over D.

Proof outline

We’ll first prove that if R is simple with a minimal left ideal, then
R ∼=Mn(D) (Wedderburn). Then we’ll prove a key lemma that will
allow us to reduce our theorem to reapeted uses of Wedderburn’s
Theorem.
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Wedderbun Theorem

Brauer’s Lemma.

Let K be a minimal left ideal of a ring R, such that K2 6= 0. Then
K = Re where e2 = e ∈ R and eRe is a division ring.

Proof.

Since K2 6= 0, certainly Ku 6= 0 for some 0 6= u ∈ K. Hence Ku = K by
minimality, so eu = u for some e ∈ K.

Now note that for r ∈ K, re− r ∈ L = {a ∈ K | au = 0}; since L ⊂ K
is a left ideal and L 6= K, it follows that L = 0 and e2 = e. Thus
e ∈ Re ⊂ RK ⊂ K, so by minimality Re = K.
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Wedderburn Theorem
Brauer’s Lemma.

Let 0 6= b ∈ eRe, then 0 6= eb ∈ Rb so Rb 6= 0, and
Rb = R(be) ⊂ Re, thus by minimality Re = Rb, say e = rb . Hence
(ere)b = er(eb) = erb = e2 = e, so b has a left inverse in eRe. As for
the right inverse, since eremust also have a left inverse (ere)∗:

(ere)∗ = (ere)∗(ereb) = b

it follows that b(ere) = (ere)∗(ere) = e, and eRe is a division Ring.

4/23



Wedderburn Theorem
Corollary to Brauer’s Lemma

Corollary.

Every nonzero left ideal in a semiprime, left artinian ring contains a
nonzero idempotent.

Proof.

If L 6= 0 is a left ideal of R, the left artinian condition gives a minimal
left ideal K ⊂ L. R is semiprime, thus (KR)2 6= 0, since KR is a
non-zero ideal (KRR ⊂ KR, RKR ⊂ KR), so
0 6= (KR)2 = KRKR ⊂ KKR = K2R, and we have K2 6= 0. Hence
Brauer’s lemma applies.
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Wedderburn’s Theorem.

If R is a simple ring with a minimal left ideal, then R ∼=Mn(D) for
some division ring D.

Proof.

Let K be a minimal left ideal. Since R is simple, it is semiprime and by
the same argument as above K2 6= 0, so by Brauer’s lemma K = Re
where e is idempontent and D = eRe is a division ring.

Then K is a right D-module and, if r ∈ R, the map αr : K→ K given by
αr(k) = rk is a D-linear transformation.
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Wedderburn Theorem

Hence ρ : R→ endD K defined by r 7→ αr is a ring homomorphism:

ρ(x+ y)(k) = αx+y(k) ρ(xy)(k) = αxy(k)

= (x+ y)(k) = xyk

= αx(k) + αy(k) = αx(αy(k))

= (ρ(x) + ρ(y))(k) = (ρ(x) ◦ ρ(y))(k)

Now we will show that this is in fact an isomporhism. Note that if
αr(k) = 0 for all k ∈ K, then rK = rRe = 0, so rR = rReR = 0 implies
r = 0, thus ρ is injective.
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Wedderburn Theorem

To see that ρ is surjective, write 1 ∈ R = ReR as 1 =
∑︀n

i=1 riesi. Given
α ∈ endD K, let t =

∑︀n
i=1 α(rie)esi. Then the D-linearity of α gives

α(re) = α

(︃∑︁
i

(riesi)re

)︃
=
∑︁
i

α([rie][esire])

=
∑︁
i

α(rie)esire

= tre

= αt(re).

Since this is true for all re ∈ Re, α = αt

and it follows that R ∼= endD K.

Note that e ∈ A, where
A = {x ∈ R | dimD αx(K) <∞},

thus A is a nonzero ideal and by sim-
plicity A = R, in particular 1 ∈ A im-
plies α1(K) = K is finite dimensional,
hence

R ∼= endD K ∼=MdimD K(D).
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Weddernburn-Artin Theorem
Preliminaries

Let I denote the set of idempotents in R. If e, f ∈ I, we write e ≤ f if
ef = e = fe, i.e., if eRe ⊂ fRf. This is a partial ordering on I (with 0
and 1 as the least and greastest elements).

I is said to satisfy themaximum condition if every non-empty subset
contains a maximal elements, that is, if e1 ≤ e2 ≤ · · · in I implies
en = en+1 = · · · for some n ≥ 1. Analagously, I is said to satisfy the
minimal condition if e1 ≥ e2 ≥ · · · in I implies en = en+1 = · · · for
some n ≥ 1. A set of idempotents is called orthogonal if ef = 0 for all
e 6= f in the set.
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Wedderburn-Artin Theorem

Lemma.

The following are equivalent for a ring R:

(1) R has maximum condition on idempotents.

(2) R has minimum condition on idempotents.

(3) R has maximum condition on left ideals Re, e2 = e.

(4) R has minimum condition on left ideals Re, e2 = e.

(5) R contains no infinite orthogonal set of idempotents.

Steps.

We will prove (1) ⇐⇒ (2), (3) ⇐⇒ (4),
(1) =⇒ (3) =⇒ (5) =⇒ (1).
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Wedderburn-Artin Theorem
Lemma (1) ⇐⇒ (2)

Proof.

Let us first note that, if e ≤ f, we have

(1− f)(1− e) = 1− e− f + fe = 1− f,

(1− e)(1− f) = 1− e− f + ef = 1− f.

Thus 1− f ≤ 1− e and the converse easily follows from the previous
equalities. If e1 ≥ e2 ≥ · · · in I implies en = en+1 = · · · for some
n ≥ 1, the above statement can be used to see that

1− e1 ≤ 1− e2 ≤ · · · =⇒ 1− en = 1− en+1 = · · · .

This proves (1) ⇐⇒ (2). 11/23



Wedderburn-Artin Theorem
Lemma (3) ⇐⇒ (4)

Similarly to the previous proof, note that

Re ⊂ Rf ⇐⇒ ef = e

⇐⇒ (1− e)(1− f) = 1− f

⇐⇒ (1− f)R ⊂ (1− e)R.

Thus a ascending chain can be turned to an descending one. This
proves (3) ⇐⇒ (4).
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Wedderburn-Artin Theorem
Lemma (1) =⇒ (3)

If Re1 ⊂ Re2 ⊂ · · · where e2i = ei for each i, then eiej = ei for all
j ≥ i. Inductively construct idempotents f1 ≤ f2 ≤ · · · as

f1 = e1
fi+1 = fi + ei+1 − ei+1fi

Note that if fi ∈ Rei, then fi+1 ∈ Rei+1, thus fi ∈ Rei for all i and
fiek = fi for k ≥ i. Moreover if f2i = fi

f2i+1 = f2i + fiei+1 − fiei+1fi + ei+1fi + e2i+1 − e2i+1fi

− ei+1f2i − ei+1fiei+1 + ei+1fiei+1fi

= fi + ei+1 − ei+1fi
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Wedderburn-Artin Theorem
lemma (1) =⇒ (3)

Finally note that

fifi+1 = f2i + fiei+1 − fiei+1fi = fi

fi+1fi = f2i + ei+1fi − ei+1f2i = fi

in other words fi ≤ fi+1. Thus (1) implies that fn = fn+1 = · · · for
some n and hence that ei+1 = ei+1fi ∈ Rei for i ≥ n. It follows that
Ren = Ren+1 = · · · .
The maxium condition on right ideals is proved analogously by taking
fi+1 = fi + ei+1 − fiei+1 instead.
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Wedderburn-Artin Theorem
Lemma (3) =⇒ (5)

By contrapositive suppose we have an infinite orthogonal set of
distinct idempotents {en}. Construct fn =

∑︀n
k=1 ek, then form < n

fmfn =

(︃ m∑︁
k=1

ek

)︃(︃ n∑︁
k=1

ek

)︃
=

m∑︁
k=1

ek = fm

Thus f2n = fn and Rfn ⊂ Rfn+1. Note that if fn+1 ∈ Rfn, then fn+1 = rfn
and fn = fn+1fn = rf2n = fn+1 implies en+1 = 0, thus fk+1 ∈ Rfk at
most once because {en} are distinct, it follows that Rf1 ⊂ Rf2 ⊂ · · ·
does not terminate.
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Wedderburn-Artin Theorem
Lemma (5) =⇒ (1)

Suppose that e1 ≤ e2 ≤ · · · does not end. Construct f1 = e1, and
fn+1 = en+1 −

∑︀n
k=1 fk. By induction we prove {fi}i is idempotent

and orthogonal. {f1} is idempotent and orthogonal, so suppose
{fi}n

i=1 is an idempotent and orthogonal set, then

f2n+1 =

(︃
en+1 −

n∑︁
k=1

fk

)︃2

= e2n+1 − en+1
n∑︁

k=1

fk −
n∑︁

k=1

fken+1 +

(︃ n∑︁
k=1

fk

)︃2

= en+1 − 2
n∑︁

k=1

fk +
n∑︁

k=1

f2k (en+1fk = fk)

= fn+1
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Wedderburn-Artin Theorem
Lemma (5) =⇒ (1)

fn+1fj =

(︃
en+1 −

n∑︁
k=1

fk

)︃
(fj)

= en+1fj −
n∑︁

k=1

fkfj

= fj − f2j
= 0

We have thus constructed an infinite orthogonal set of idempotents.
By contrapositive (5) =⇒ (1).
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Wedderburn-Artin Theorem

If R is a semiprime left artinian ring then.

R ∼=Mn1(D1) × Mn2(D2) × · · · × Mnr(Dr)

where each Di is a division ring andMn(D) denote the ring of n× n
matrices over D.

Proof.

Let K be a minimal left ideal, let S = KR and let
M = {a ∈ R | Sa = 0}. Then S is an ideal because K is a left ideal
andM is an ideal because for all r1, r2 ∈ R if a ∈M,
S(r1ar2) ⊂ S(ar2) = 0. We then claim

R ∼= S× M
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Wedderburn-Artin Theorem

First note S∩M = 0 because R is semiprime and (S∩M)2 ⊂ SM = 0.
Define ρ : S× M→ R by (s,m) 7→ s+ m, this is an homomorphism:

ρ((s1,m1) + (s2,m2)) = ρ(s1 + s2,m1 + m2)

= s1 + s2 + m1 + m2

= ρ(s1,m1) + ρ(s2,m2)

ρ((s1,m1) · (s2, ,m2)) = ρ(s1s2,m1m2)

= s1s2 + m1m2

= s1s2 + s1m2 + m1s2 + m1m2

= ρ(s1,m1)ρ(s2,m2).
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Wedderburn-Artin Thorem

Since S ∩M = 0, if ρ(s,m) = s+ m = 0 then s = m = 0, hence ρ is
injective.

Now let e ∈ S be a maximal idempotent (which exists by our lemma),
note that r = re+ r(1− e), thus for surjectivity it’s enough to show
1− e ∈M.

If this is not the case, then S(1− e) 6= 0 and by the corollary to
Brauer’s lemma there is a nonzero idempotent f ∈ S(1− e). Then
f = s(1− e) means f(1− e) = s(1− e)2 = s(1− e) = f, thus fe = 0.
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Wedderburn-Artin Thorem

Let g = e+ f − ef, we see that
g2 = e2 + ef − e2f + fe+ f2 − fef − efe− ef2 + efef = g is an
idempotent in S, furtheremore e ≤ g:

eg = e2 + ef − e2f = e

ge = e2 + fe− efe = e

thus by the maximality of e, we must have e = g = e+ f − ef, so
f = ef, however f = f2 = fef = 0 is a contradiction. So 1− e ∈M
and R ∼= S× M.
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Wedderburn-Artin Theorem

Since 1 = s1 + m1, we have

s1s = (s1 + m1)s = s = s(s1 + m1) = ss1
m1m = (s1 + m1)m = m = m(s1 + m1) = mm1

shows that S andM are rings with unity, moreover s1 = e and
m1 = 1− e, by the maximality of e in S.

If L is a left ideal of S, then RL ∼= (S× M) (L× 0) ∼= SL ⊂ L, and the
same is true forM, this means that left ideal of S andM are left
ideals of R, so they inherit the hypotheses on R.
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Wedderburn-Artin Theorem

Now we’ll show that S is simple. If 0 6= A ⊂ S is an ideal, then
AK ⊂ A and AK ⊂ K tells us that 0 6= A2 ⊂ AS = AKR ⊂ (A ∩ K)R,
thus A ∩ K 6= 0 and the minimality of K gives K ⊂ A, whence
S = KR ⊂ AR ⊂ A.

Finally ifM = 0 the proof is complete by Wedderburn’s theorem.
Otherwise we can repeat this process with R replaced byM to get
R ∼= S× S1 ×M1, where S1 is simple. This cannot continue indefinitely
by the artinian hypothesis, so Wedderburn’s theorem completes the
proof.
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