The Wedderburn-Artin Theorem
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As proved by W.K. Nicholson



Preliminaries

R will denote a non trivial associative ring with unity.

If X, Y are additive subgroups of R, we define their product by

n
A% T XY = {Zx,-y;an‘l, Xj € X, y,-GY}.

i=1

We call R semiprime if A # O for every nonzero ideal A in R.
R is simple if it has no ideals other than O and R. Such a ring is
necessarly semiprime.

We say that R is left artinian if for every descending chain of left
ideals K1 D K, D ---, thereisannsuchthat K, = K,41=---.

This is equivalent to every nonempty family of left ideals having
a minimal member.
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Wedderburn-Artin Theorem

If R is a semiprime left artinian ring then.
R E Mn1(D1) X an(DZ) X oo X Mnr(Dr)
—Mmi= M\ R

where each D; is a division ring and M,,(D) denote the ring of n X n
matrices over D.

Proof outline

We'll first prove that if R is simple with a minimal left ideal, then

R = M, (D) (Wedderburn). Then we'll prove a key lemma that will
allow us to reduce our theorem to reapeted uses of Wedderburn’s
Theorem.
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Wedderbun Theorem

J+k 0K

Let K be a minimal left ideal of a ring R, such that K? # 0. Then
K = Re where e = e € R and eRe is a division ring.

Brauer’s Lemma.

Proof.

Since K? # 0, certainly Ku # O for some O # u € K. Hence Ku = K by

minimality, so eu = u for some e € K. N

i
Now note that forr €K, re—r €L = {a €K |fau=0};sincel C K
is a left ideal and E_ﬁl( it follows that L = 0 and e = e. Thus

. o . . =_.— _ (
e e R;(_: Rff C K, so by minimality Re = K YC=
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Wedderburn Theorem
Brauer’s Lemma.

g% =
Let O # b € eRe, then O # eb € Rb so Rb # 0, and Q
Rb = R(be) C Re, thus by minimality Re = R Rb, say e = rb . Hence
(ere)Q = e_geb) =erh=¢€?= =e,sob has a left inverse in eRe. As for
the r right inverse, since ere must also have a left inverse (ere)*:
S
(ere)* = (ere)* (ergb) = b

P

it follows that b(ere) = (ere) * (ere) = e, and eRe is a division Ring.
- ~
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Wedderburn Theorem
Corollary to Brauer’s Lemma

Corollary.

Every nonzero left ideal in a semiprime, left artinian ring contains a
nonzero idempotent.

Proof.

If L # O'is a left ideal of R, the left artinian condition gives a minimal
left ideal K C L. R is semiprime, thus (KR)? # 0, since KR is a
non-zero ideal (KRR C KR, RKR C KR), 50

0 # (KR)? = KRKR C KKR = Kil_?, and we have K? # 0. Hence
Brauer’s lemma applies. AV} O

L =R<
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Wedderburn’s Theorem.

If R is a simple ring with a minimal left ideal, then R = M, (D) for
some division ring D.

Proof.

Let K be a minimal left ideal. Since R is simple, it is semiprime and by
the same argument as above K2 # 0, so by Brauer’s lemma K = Re
where e is idempontent and D = eRe is a division ring.

Then K is a right D-module and, if r € R, the map a; : K — K given by
o, (k) = rk is a D-linear transformation.

o (4 k) = ¥k ¥hka) =% () +r k)
Ay(k 4) = v kd = Ay (k)d



Wedderburn Theorem

V) 4 J
Hencep :R — en(% K defined by r — a; is a ring homomorphism:
\ P —

p(x + y)(k) = axty(k) p(xy)(k) = ax, (k)
= (x+y)(k) = xyk.
= ax(k) + ay(k) = ax(ay(k))
Ply)=0 = (p(x) + p(y))(k) = (p(x) o p(y)) (k)

Now we will show that this is in fact an isomporhism. Note that if
ar(k) = Oforall k € K, then rK =(rRe = O, so rR = rReR = O implies

r = 0, thus p is injective.
°<V'[K)'__. O = Yk
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Wedderburn Theorem

To see that p is surjective, write 1 € R = ReR as 1 = Z’; ries;. Given
a € endpK, lett = Z‘; a(rie)es;. Then the D-linearity of o gives

Since thisis true for allre € Re, a = a;

and it follows that R = endp K.
a(re) = o (Z(r;es;)re)
i Note that e € A, where O(e(/‘) =eRed)
= Za([r,e][esre]) A= {x€R]| dimpay(K) < oo},
thus A is a nonzero ideal and by sim-
= Z a(rie)esire plicity A = R, in particular 1 € A im-
' plies a1(K) = K is finite dimensional,
= tre hence
= ay(re). R = endpK = Mdim, k(D).
Ol
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Weddernburn-Artin Theorem
Preliminaries

Let | denote the set of idempotentsinR. If e, f € I, we write e < f if
ef = e = fe,i.e., if eRe C fRf. This is a partial ordering on I (with O
and 1 as the least and greastest elements).

| is said to satisfy the maximum condition if every non-empty subset
contains a maximal elements, that is, ife; < e; < --- in | implies

e, = ep4q1 =+ for some n = 1. Analagously, | is said to satisfy the
minimal conditionife; = e; = -+ inlimpliese, = e,4q = --- for
some n = 1. A set of idempotents is called orthogonal if ef = O for all
e # f in the set.
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Wedderburn-Artin Theorem

Lemma.

The following are equivalent for a ring R:
(1) R has maximum condition on idempotents.
(2) R has minimum condition on idempotents.
(3) R has maximum condition on left ideals Re, e? = e.
(4) R has minimum condition on left ideals Re, e? = e.

(5) R contains no infinite orthogonal set of idempotents.

Steps.

We will prove (1) < (2), (3) < (4),
M= @)= ©B)= ).
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Wedderburn-Artin Theorem
Lemma (1) < (2)

F—

Let us first note that, if e < f, we have ,q - =
i ef-e=- 4t

L (1=NU—e)=1—£—f+f£=1—T, 7_\,3‘
(1= e)(1—f) = | —F+ of = 1. &\/3‘\ >
Thus 1— f < 1— e and the converse easily follows from the previous

equalities. Ife; = e, = - -« inlimplies e, = e,41 = - -+ for some
——— g
n = 1, the above statement can be used to see that \-

1—er<1—e<-s = 1—e,=1—epp1="+--.

| ——

This proves (1) < (2). 123



Wedderburn-Artin Theorem
Lemma (3) < (4)

. =€
- : N6
Similarly to the previous proof, note that % (’
— Re” e M
ReCRf &< ef=e 0
= (1—e)(1—f)=1=f
<~ (1—f)RC (1—e)R.

R

Thus a ascending chain can be turned to an descending one. This
proves (3) < (4).
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Wedderburn-Artin Theorem
Lemma (1) = (3)

If Rey C Re; C -+« Where e’? = e, for each i, then e;e; = e; for all
j 2 i. Inductively construct idempotents f; < f, < .-+ as
fi=e
fizh = f{ + €ix1— ejpfi
Note that if f; € Re;, then fi+1 € Rejy4, thus f; € Re; for all i and
fiex = f; for k > i. Moreover if f’.2 =f;

f,.z+1 = f, + figh — fiedafi + e/'4-/1fi + e}zﬂ — e%fi
— ei+1f,~2 = ei+1f‘zéi+1 + €i+1fiei,4-1fi

=fi + eix1— eipfi
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Wedderburn-Artin Theorem
lemma (1) = (3)

Finally note that

fifie1 = f,.2 + fieiy1 — figipifi = fi

fivafi = f’2 + ejusfi — e,',H[iz =f;

in other words f; < fix1. Thus (1) implies that f, = f,4q = -« - for
some n and hence that ej;1 = ej+1f; € Re; for i = n. It follows that
Re, = Reptq = ---.

The maxium condition on right ideals is proved analogously by taking
fix1 = fi + €i41— fiej4+1 instead.
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Wedderburn-Artin Theorem
x
Lemma (3) = (5) el 2

By contrapositive suppose we have an infinite orthogonal set of
distinct idempotents {e, }. Constructffﬂ,= ZZ=1 ek, then for__rgf__n

et tain= (Z) (Z) _S &=,
A k=1 k=1 \ W™ ?Qw
UE Ccp O
Thus f§ = f, and R’fu_g_B.ﬁ,.,H. Note that if f,4+1 € Rfp, then fn+q = rfy

and fp = fpgafn = rfﬁ = fn+1 implies e,11 = O, thus fi41 € Rfy at
most once becaus’é’{en} are distinct, it follows that Rfy C Rf, C
does not terminate.
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Wedderburn-Artin Theorem
Lemma (5) = (1)

Suppose that e; < e, <+ -+ does not end. Construct f, = ey, and
for1 = €npr— Z:=1 f«. By induction we prove {f;}; is idempotent
and orthogonal. {fi } is idempotent and orthogonal, so suppose
{fi}]_, is an idempotent and orthogonal set, then

n 2
fr21+1 = (en+1_ka)
k=1
n ',/ n\'/ n 2
=€§+1—€n+1ka—kaen+1+ (ka)
k=1 k=1

=1
=

= ent1 —,z;fk + ;ff (en+ific = fi)
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Wedderburn-Artin Theorem
Lemma (5) = (1)

5 +1
JLn

fnafj = (en+1 — ka) ()
k=1

k=1

We have thus constructed an infinite orthogonal set of idempotents.

By contrapositive (5) = (1). O
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Wedderburn-Artin Theorem

If R is a semiprime left artinian ring then.
R E Mn1(D1) X an(DZ) X eee X Mnr(Dr)

where each D; is a division ring and M,,(D) denote the ring of n X n
matrices over D.

Proof.

Let K be a minimal left ideal, let S = KR and let

M= {a €R|Sa=0}.Then Sis an ideal because K is a left ideal
and M is an ideal because for all ry, r, € Rif a € M,

S(rqar,) € S(ary) = 0. We then claim

RESx M
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Wedderburn-Artin Theorem

First note SN M = 0 because R is semiprime and (SN M)? € SM = 0.
Define p : S x M — R by (s, m) — s + m, this is an homomorphism:

p((s1, m1) + (s2, m2)) = p(s1+ s2, M + my)
=S51+S+m+my
= p(s1, M) + p(s2, my)
p((s1, M) « (s2,, m2)) = p(s152, mimy)
= 515, + mym,
= $1Sp + smy + MSp, + mmy,

= p(s1, mi)p(sz, my).
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Wedderburn-Artin Thorem

f=-
SinceSNM =0, if p(s,m) =s+m=0thens=m =0, hence p is
injective.

ree
Now let e € S be a maximal idempotent (which exists by our lemma),

note that r = re + r(1— e), thus for surjectivity it's enough to show
1—eeM. Ca="?

If this is not the case, then S(1— e) # 0 and by the corollary to
Brauer’s lemma there is a nonzero idempotent f € S(1—e). Then
f=s(1—e)meansf(1—e) =s(1—e)? =s(1—e) =f, thusfe = 0.

F -fe=F
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Wedderburn-Artin Thorem

Fe:c‘)
Let g = e + f — ef, we see that A
g2=e2+9{—@2/;‘+/fe+f2—fe/f—¢?e—ef2+gfef=gisan

idempotent in S, furtheremore e < g:

eg=e2+ﬁ—ff=e

ge=e’+fe—efe=e

thus by the maximality of e, we must havee =g =e + f — ef, so
f = ef, however f = f2 = fef = O is a contradiction. S0 1—e € M
andR=Sx M.

21/23



Wedderburn-Artin Theorem

Since 1 = s; + my, we have
’—/.

s15 = (51 + mys =5 = s(s; + mq) = ss;

mim = (s; + my)m = m = m(s; + my) = mm;

shows that S and M are rings with unity, moreover s; = ¢ and

my = 1— e, by the maximality of e in S.
AR oyl
If Lis a left ideal of S, then ELE (Sx M)(Lx 0)=SLCL,andthe

same is true for M, this means that left ideal of S and M are left
ideals of R, so they inherit the hypotheses on R.
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Wedderburn-Artin Theorem

AkcCA /\k(/k

Now we'll show that S is simple. If O’£A_C.S is an ideal, then

AK C Aand AK C K tells us that 0 # A2 C AS = AKR C (ANK)R=2
thus AN K # 0 and the minimality of K givesﬁg_A, whence
S=KRCARCA. S=4

Finally if M = O the proof is complete by Wedderburn’s theorem.
Otherwise we can repeat this process with R replaced by M to get
R = S x §; x M;, where S; is simple. This cannot continue indefinitely
by the artinian hypothesis, so Wedderburn’s theorem completes the
proof. =
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