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Basic of Representation Theory

Definition 1.1 A General Linear Group over C, GL(n,C) is

the set of all nxn invertible matrices over C. If V is a vector

space then GL(V ) is the set of all automorphisms of V .

Definition 1.2 A representation ϕ of a group G is a

homomorphism ϕ : G → GL(n,C).
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Definition 1.3 A G -module V is a vector space for which

there exists a homomorphism ϕ : G → GL(V ).

The representation ϕ induces a multiplication G in V . Let

g ,h,e ∈ G ; v ,w ∈ V ; α ∈ C and denoted ϕ(g) as g , then

define the operation g ? v = ϕ(g)v and

(1) g ? (v +w) = g ? v +g ?w ,

(2) α(g ? v) = g ? (αv),

(3) (gh)? v = g ?h ? v ,

(4) e ? v = v .

3



Definition 1.4 The group algebra, denoted C[G ], is the set

of all linear combinations of elements of G .

C [G ] =

{
∑
g∈G

cgg |cg ∈ C

}
and

h ?

(
∑
g∈G

cg (hg)

)
= ∑

g∈G
cg (hg) for all h ∈ G .

Definition 1.5 Reducible and Irreducible. If a module has

a non-trivial, invariant proper subspace, then it is said to be

reducible. A module that is not reducible is said to be

irreducible.
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Definition 1.6 Trivial representation The unit or trivial

representation of G is the representation ϕ : G → GL(C) such

that ϕ(g) = [1] for every g ∈ G .

Definition 1.7 Alternating representation If G has a

subgroup H with index 2, then we can define the alternating

representation associated to the pair (G ,H) as the

representation ϕ : G → GL(C) such that ϕ(g) = [1] if g ∈ H

and ϕ(g) = [−1] otherwise.
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Definition 1.8 Standard representation The standard

representation of a symmetric group on a finite set of degree n

is an irreducible representation of degree n−1.

The group Sn acts on Cn by permuting basis vectors. This

representation has a 1-dimensional invariant subspace,

spanned by the vector e1 + e2 + ...+ en, which is the trivial

representation. A complementary subspace to this is

V = {a1e1 + ...+anen|a1 + ...+an = 0}

where V is the standard representation of Sn.
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Example
The representation of S3. ϕ : S3→ C∗

1) The trivial representation that sends every element to [1].

2) The sign representation ϕ , that sends every element to its

sign

(12) 7→ [−1], (132) 7→ [1]

3) The defining representation, ϕ ′ that permutes the columns

of the 3x3 identity matrix:

(12) 7→

0 1 0

1 0 0

0 0 1

 , (132) 7→

0 0 1

1 0 0

0 1 0

 ,etc .
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And the corresponding modules.

1) The one-dimensional vector space C. Since for all c ∈ C,

g ? c = c

2) The one-dimensional vector space C. Since for all c ∈ C,

g ? c = c if g is an even permutation,

g ? c =−c if g is an odd permutation.

3) The three-dimensional vector space C3. Where the action

by a group element just permutes the coordinates of the

vector. For example,

(12)?

2

3

1

=

3

2

1
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Notice that modules from 1) and 2) are irreducible since they

are one-dimensional.

While the module from 3) is reducible (by Definition 1.8)

since we have a invariant subspace W = span


1

1

1


.
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By Definition 1.8 the complementary subspace of W

V = {a1

1

1

1

+a2

0

1

0

+a3

0

0

1

 |a1 +a2 +a3 = 0}

is the modulo for the irreducible standard representation

Then,

(1) 7→

[
1 0

0 1

]
, (12) 7→

[
1 1

0 −1

]
, (13) 7→

[
0 −1

−1 0

]

(23) 7→

[
−1 0

1 1

]
, (123) 7→

[
0 1

−1 −1

]
, (132) 7→

[
−1 −1

1 0

]
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Maschke’s Theorem

Theorem 1.9 (Maschke’s Theorem).

Given a group G and a non-zero module V ,

V = W (1)⊕ ...⊕W (k),

where W (i) are irreducible representations.

Proof

Proposition 1.10 Let V be a G -module, W a submodule,

and 〈·, ·〉 an inner product invariant under the action of G .

Then W⊥ is also a G-submodule.

We will induct on d =dimV . If d = 1, then V we are done.

Now suppose that d > 1. If V is reducible, then V has a

nontrivial G -submodule, W . (We will construct a submodule

complement for w)
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Pick any basis B = {v1,v2, ...,vd} for V . Consider the unique

inner product that satisfies

〈vi ,vj〉= δi ,j

for elements of B . This product may not be G -invariant, but

we can come up with another one that is. For any v ,w ∈ V

we let the inner product

〈v ,w〉′ = ∑
g∈G
〈gv ,gw〉.

To show that it is G -invariant under 〈·, ·〉′ , we wish to prove

〈hv ,hw〉′ = 〈v ,w〉′

for all h ∈ G and v ,w ∈ V .
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But

〈hv ,hw〉′ = ∑
g∈G
〈ghv ,ghw〉= ∑

f ∈G
〈fv , fw〉= 〈v ,w〉′

as desired.

If we let

W⊥ = {v ∈ V : 〈v ,w〉′ = 0},

then by Lemma 1.10 we have that W⊥ is a G -submodule of V

with

V = W ⊕W⊥.

Now we can apply induction to W and W⊥ to write each as a

direct sum of irreducibles. Putting these two decompositions

together, we see that V has the desired form. �
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Lemma 1.11 (Schur’s Lemma). Let V and W be two

irreducible G -modules and let Φ be a homomorphism that

preserves g action, Φ : V →W and Φ(g ? v) = g ?Φ(v). Then

either Φ is an isomorphism or Φ is the trivial map.

Proof. Consider the kernel of Φ, which is a vector space.

Then, by definition of Φ, for all v ∈ ker Φ, the vector

Φ(g ? v) = g ?Φ(v) = g ?0 = 0.Thus, g ? v ∈ ker Φ, for all

v ∈ V . Therefore, the kernel is a vector space invariant under

action by g . But, irreducible modules do not have nontrivial

subspaces, so either ker Φ = {0}, in which case Φ is an

isomorphism, or ker Φ = V , in which case Φ is the trivial map.
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Characters and Conjugacy Classes

In this section we will show that the number of conjugacy

classes is an upper bound.

Definition 2.1 The character of a group element g with

respect to some representation ϕ , denoted χ(g) and later

θ (g), is just the trace of the matrix for g : χ(g) = tr(ϕ(g)).

Proposition 2.2 For any character χ and group element g ,

χ(g)∗ = χ(g−1) where ∗ denotes complex conjugation.

Proposition 2.3 If g and h are group elements in the same

conjugacy class K , then g and h have the same character:

χ(g) = χ(h).
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Proof 2.2 By picking the orthogonal basis of the V, where V

is the G-modulo, we obtain a matrix representation Y for χ ,

where each Y (g) is unitary, i.e.

Y (g−1) = Y (g)−1 = (Y (g)∗)t then

χ(g)∗ = trY (g)∗ = trY (g−1)t = trY (g−1) = χ(g−1).�

Proof 2.3 By hypothesis g = khk−1 and definition 2.1,

χ(g) = trϕ(g) = trϕ(k)ϕ(h)ϕ(k)−1 = trϕ(h) = χ(h).�
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Continue with Example of S3.The identity element has trace 3

and is in a conjugacy class all to itself.The two-cycles (12),

(13), and (23) all have character 1 and are in the same

conjugacy class; and the three cycles (123) and (132) both

have character 0 and are also in the same conjugacy class.

Denote these conjugacy classes with K(1);K(2), and K(3),

respectively.

We can now compute the character of each conjugacy class for

every irreducible representation in the next table:
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We will define a product operation that ensures that such

tables have orthogonal rows. We define our inner product for

the characters as

〈χ,θ〉=
1

|G | ∑
g∈G

χ(g) ·θ (g−1)

=
1

|G | ∑
g∈G

χ(g) ·θ (g)∗

=
1

|G |∑K
|K | ·χ(K ) ·θ (K )∗

(1)

Let ϕ and ψ be inequivalent, irreducible representations of a

group G. Call their corresponding characters χ and θ

respectively. Later, we prove 〈χ,θ〉= 0
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Suppose ϕ has dimension m and ψ has dimension n. In order

to define a homomorphism Φ : Cn→ Cm for every pair i , j

where i ≤m and j ≤ n, we first define the mxn matrix Ei ,j
where the i .j th entry is 1 and all the other entries are 0.

Then we define Φ as left multiplication by a matrix Fi .j

Fi ,j =
1

|G | ∑
g∈G

ϕ(g) ·Ei ,jψ(g−1)

Ψ =Fi ,j · v

Now we want to prove that Φ is an homomorphism.
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Φ(h ? v) = h ?Φ(v)⇔
Φ(ψ(h) · v) = ϕ(h) ·Φ(v)⇔
Fi ,j ·ψ(h) · v = ϕ(h) ·Fi ,j · v ⇔

Fi ,j ·ψ(h) = ϕ(h) ·Fi ,j ⇔
Fi ,j = ϕ(h) ·Fi ,j ·ψ(h−1)

So we just have to prove Fi ,j = ϕ(h) ·Fi ,j ·ψ(h−1). Notice

that G = hG for some h ∈ G , specifically g = hg , then
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Fi ,j =
1

|G | ∑
g∈G

ϕ(g) ·Ei ,j ·ψ(g−1)

=
1

|G | ∑
g∈G

ϕ(hg) ·Ei ,j ·ψ((hg)−1)

=
1

|G | ∑
g∈G

ϕ(h)ϕ(g) ·Ei ,j ·ψ(g−1)ψ(h−1)

=ϕ(h) ·Fi ,j ·ψ(h−1)

So Φ is an homomorphism of irreducible representations. By

Schur’s lemma, Φ is either an isomorphism or the zero map.
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Since the representations are inequivalent, Φ is the zero map

and Fi ,j is the zero matrix for all i , j , in particular the i , j th

entry of Fi ,j is zero, so

0 = i , j th entry of Fi ,j (2)

=
1

|G | ∑
g∈G

ϕ(g)i ,i ·ψ(g−1)j ,j . (3)
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Lemma 2.4. The inner product of any two characters

associated with two inequivalent, irreducible representations is

0.

Proof.

χ(g)θ (g−1) = ∑
i≤m

ϕ(g)i ,i ·∑
j≤n

ψ(g−1)j ,j = ∑
i ,j

ϕ(g)i ,i ·ψ(g−1)j ,j

where ψ is the representation corresponding to θ . By

combining Equation (1) and Equation (3), we find,

〈χ,θ〉=
1

|G | ∑
g∈G

χ(g)·θ (g−1) =
1

|G |∑i ,j
∑
g∈G

ϕ(g)i ,i ·ψ(g)j ,j = 0.�
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Lemma 2.5 Let G be a group with K conjugacy classes

denoted K (1), ...,K (k) and let ϕ and ψ be inequivalent,

irreducible representations with associated characters χ and θ .

Suppose v is a vector where the i th entry of v is given by

χ(K (i)) and similarly the θ (K (j)). So, is the j th entry of some

vector w . Then v and w are linearly independent.

Proof. To prove v and w are linearly independent, we

temporarily define a new inner product operation on two

vectors x and y of length k where xi denotes the i th entry of x.

〈x ,y〉=
1

|G |
·
(
|K (1)| · x1 · y1 + ...+ |K (k)| · xk · yk

)
.

The reader can check that this, in fact, defines an inner

product operation. Notice that in our case,

〈w ,v〉= 〈χ,θ〉= 0

.
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Consider a linear combination of v and w that gives 0,

c1v + c2w = 0.

To show that c1 = 0, we simply take the inner product of both

sides and simplify

〈c1v + c2w ,v〉= 〈0,v〉
c1〈v ,v〉+ c2〈w ,v〉= 〈0,v〉

c1〈v ,v〉+ 0 = 0

〈v ,v〉 6= 0

c1 = 0.

A similar argument will show that c2 = 0. �

25



Theorem 2.6 The number of irreducible representations

is at most the number of conjugacy classes.

Proof. Suppose a group G has k conjugacy classes. Since the

set of inequivalent, irreducible representation correspond to

linearly independent vectors of length k , there can be at most

k of them.

#of irreducible representations = #of rows

= #of rows

= #of linearly independent rows

= #of linearly independent columns

≤#of columns of conjugacy classes

Therefore, the number of conjugacy classes is an upper bound

on the number of inequivalent, irreducible representations. �
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Specht Modules

In this section, we will build a set of modules, known as Specht

modules, for each conjugacy class of the symmetric group.

Definition 3.1 A partition of a positive integer n is a

sequence of positive integers, λ =(λ1,λ1, ...) in non-increasing

order that sum to n.

The partitions of n are canonically associated with the cycle

shapes of Sn.

For example, the partition (3,2,2,1) of 8 is associated with

the permutations on 8 letters with one three-cycle, two

two-cycles and one one-cycle.
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Lemma 3.1The conjugacy classes of Sn are determined

entirely by cycle shape.

Proof. Let p and q be permutations. Let us conjugate q by

p. We will first show that to find pqp−1, we just have to apply

p point-wise to the cycles of q. Let q send some n to q(n).

Then, (pqp−1)(p(n)) = (pq)(p−1p)(n) = p(q(n)). Since p is

applied point-wise to q, the cycle shape is retained. We can

also conjugate two permutations of the same cycle shape into

one another. If we want to conjugate q into q′, we just find

some p that maps cycle to cycle. Thus, q and q′ are conjugate

by this p. �
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Example

Consider two elements of S3, (12) and (13). Now if the

proposition is true, then these two elements are conjugate. For

example, if we conjugate by (23), we get

(23)◦ (12)◦ (23) = (13). Similarly, the proposition predicts

that any conjugation will preserve cycle shape. For example,

(123)◦ (12)◦ (132) = (23).
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A Young diagram is just an array of boxes, with nonincreasing

row length. The length of each row represents the size of one

cycle.

Example

one two-cycle, one one-cycle = (2,1) =

one five-cycle, one four-cycle = (5,4) =
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We get a filling by filling in each box with a number. A

standard filling satisfies two conditions: the entries are

ordered in decreasing value along the rows and down the

columns, and it represents a permutation i.e. the numbers 1

through n are used precisely once. The resulting array is a

standard Young tableau.

Example

(12)(3) =
1 2

3

(13578)(2469) =
1 3 5 7 8

2 4 6 9
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We define the group action pointwise: for any permutation g ,

we just apply g individually to the entries of the tableau T .

Let us do some more examples. Notice that we defined action

by g to have the same effect as conjugation by g .

Example

(13)?
1 2

3
=

3 2

1
= (13)◦ (12)◦ (13)

(1589)?
1 3 5 7 8

2 4 6 9
=

5 3 8 7 9

2 4 6 1

= (1589)◦ (13578)(2469)◦ (1985)
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A tabloid is such an equivalence class of Young tableaux. A

tabloid corresponding to T is denoted by {T}.

Let us say we have a Young tableau we define the equivalents

Young tableaus as

1 2 3

4 5
∼

3 1 2

5 4
∼

1 3 2

4 5
∼

3 2 1

5 4

if we have two equivalent tableaux we get back a specific

permutation that takes the first diagram into the second.
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So, the row stabilizer for a tableau T , denoted R(T ), is the

same as picking a permutation on the first set of letters, then

one on the second set of letters and so on.

The column stabilizer, denoted C (T ). We found elements of

the row stabilizer by just rearranging the entries of the rows.

Let have the tableau T =
1 2 3

4 5 6
, then

R(T ) = {(1),(12),(13),(23),(45),(46),(56),(12)(45),(12)(46),

(12)(56),(13)(45),(13)(46),(13)(56),(23)(45),(23)(46),(23)(56),

(123),(132),(456),(465),(123)(456),(123)(465),(132)(456),

(132)(465)},
C (T ) = {(1),(14),(25),(36),(14)(25),(14)(36),(25)(36),

(14)(25)(36)}. 34



Let T be a Young tableau. We define the associated

polytabloid, denoted by eT as follows:

eT = ∑
π∈C(T )

sgn(π)π ?{T}.
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Proposition 3.2. For all g ∈ G , g ? eT = eg?T . Next, we

define the Specht module, usually denoted S (λ ), where λ just

specifies a cycle shape.

Proof.

eg?T = ∑
π∈C(g?T )

sgn(π)π ?{g ?T}

= ∑
π∈g◦C(T )g−1

sgn(π)π ?{g ?T}

= ∑
π ′∈C(T )

sgn(g ◦π
′ ◦g−1)g ◦π

′ ◦g−1 ?{g ?T}

= g ? ∑
π ′∈C(T )

sgn(π
′)π
′ ?{T}

= g ? eT
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Definition 3.3. A Specht module is a module spanned by

polytabloids eT , where T is taken over all tableaux of shape λ

i.e. S (λ ) = {c1eT1
+ c2eT2

+ c3eT3
+ ...|c1,c2, ... ∈ C ,T1,T2, ...

are tableaux of shape λ .

The trick to figuring out what S (λ ) looks like for λ =(1,1,1) is

to look at g action on a basis element eT . For any group

element g , we have the following equalities:
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g ? eT = g ? ∑
π∈C(T )

sgn(π)π ?{T}

= ∑
π∈S(3)

sgn(π) ·g ◦π ?{T}

= ∑
π∈S(3)

sgn(g−1gπ) ·g ◦π ?{T}

= ∑
π∈S(3)

sgn(g−1)sgn(gπ) ·g ◦π ?{T}

= ∑
gπ∈S(3)

sgn(g−1)sgn(gπ) ·g ◦π ?{T}

= sgn(g−1)eT

= sgn(g)eT

So S (λ ) is the sign representation.
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If we were to write out all the eT , we would realize that for all

T , eT =±e
1

2

3

. Notice that, even though there were 3!

different tableaux, the resulting Specht module was still only

one-dimensional.
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Irreducibility of the Specht Modules

In this section, we will show that these Specht modules have

no proper, nontrivial submodules invariant under the action of

g .

Lemma 4.1 Let T and T ′ be two λ tableaux. Then

∑
∈C(T ′)

sgn(π)π ?{T}=±eT ′ .

Proof. The argument is similar to the argument we used to

prove S (λ ) gives the sign representation when λ = .
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T = g ?T ′for some g ∈ G

∑
π∈C(T ′)

sgn(π)π ?{T}= ∑
π∈C(T ′)

sgn(π)π ?{g ?T ′}

= ∑
π∈C(T ′)

sgn(π)π ◦{g ?T ′}

= ∑
π∈C(T ′)

sgn(π ◦g)sgn(g−1)π ◦g ?{T ′}

= sgn(g−1) ∑
π∈C(T ′)

sgn(π ◦g)π ◦g ?{T ′}

= sgn(g−1)eT ′

=±eT ′
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Lemma 4.2. Let W be a nontrivial subspace of S (λ ) for some

λ and let w ∈W such that w 6= 0. Choose some tableau T of

shape λ . Then,

∑
π∈C(T )

sgn(π)π ?w = c · eT ,

for some c ∈ C. Since w 6= 0, c 6= 0.

Proof. Since w ∈ S (, it must be the sum of tabloids of shape

λ indexed by i

w = ∑
i

ci{Ti}

By the previous lemma,

∑
π∈C(T )

sgn(π)π ?Ti =±eT ,

for all i . Then, we have the following equation:

∑
π∈C(T )

sgn(π)π ?w =±c1eT ± c2eT ± ... = c · eT , c ∈ C.
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Theorem 4.3 The Specht modules are irreducible.

Proof. Since W is a nontrivial subspace, it contains w 6= 0.

By the previous lemma

∑
π∈C(T )

sgn(π)π ?w = c · eT .

for some c ∈ C . Since W is invariant under group action,

π ?w ∈W , for all π ∈ C (T ). Therefore, the linear

combination,

∑
π∈C(T )

sgn(π)π ?w ∈W

But, this implies that c · eT ∈W for some c 6=0, and thus

eT ∈W . However, since g? = eg?T , we can obtain any

tableau T ′ from T by this g action. Since W is invariant

under this g action, eT ∈W for all T ′ of shape λ . Therefore,

W = S (λ ).
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Dimensions of the Irreducible Representations

In this section we prove that the polytabloids associated with

the standard Young tableaux of shape λ form a basis for the

Specht module S (λ )

Theorem 5.1. The polytabloids associated with the standard

Young tableaux form a basis for the corresponding Specht

module: S (λ ) = {c1eT1
+ + ckeTk

|c1, ...,ck ∈ C ,T1, ...,Tk} are

standard tableaux of shape λ .

We will prove this in parts; we will first show that the standard

polytabloids are linearly independent and then show that they

span the Specht modules. We begin with some machinery.
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Definition 5.2. We say {T}< {T ′} if there exists some i

such that,

(1) for all j > i , j is in the same row of both {T} and {T ′},

(2) i is in a higher row of {T} than {T ′}.

The ordering extends to tableaux just as one would expect:

T < T ′ if {T}< {T ′}, where T ≤ T ′ and T ′ ≤ T implies

{T}= {T ′}.

Example:
3 4 5

1 2
<

2 4 5

1 3
<

1 4 5

2 3
for the first

inequality i = 3 and i = 2 for the second one.
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Lemma 5.3. Suppose π ∈ C (T ) for some standard Young

tableau T . Then,

{π ?T} ≤ {T}.

Proof. Take the largest entry permuted by π and label it i .

All j > i are not permuted. Therefore, they are in the same

row of T as π ?T . The columns are already in descending

order. Therefore, any permutation must take the largest entry

permuted to a higher row. Thus, {π ?T} ≤ {T}.
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Theorem 5.4 The polytabloids associated with the standard

Young tableaux are linearly independent.

Proof Suppose we apply this ordering to the standard

tableaux, T1 < T2 < ... < Tk and that there is a linear

combination of the associated polytabloids that gives 0,

c1eT1
+ c2eT2

+ ...+ ckeTk
= 0.

We will begin by showing that ck = 0. When we expand eTk
,

we get {Tk}± ...

In order to cancel {Tk}, it must show up again later down in

the line. But, the terms in any other polytabloid are of the

form π ?{Tl} for some l < k . Applying the previous lemma,

π ?{Tl} ≤ {Tl}< {Tk}, so we cannot possibly cancel {Tk}
with any other polytabloid. Thus, ck = 0. We can apply an

inductive argument to show that ci = 0, for all i ≤ k .
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We will now demonstrate a combinatorial process known as

the straightening algorithm, which takes any standard tableau

T and writes the associated polytabloid eT in terms of other

polytabloids closer to a linear combination of polytabloids

associated with standard Young tableaux.

(1)Take a tableau T . Order the columns in decreasing order,

which only changes the sign of the final linear combination.

For instance if you have the tableau T =

1 9 3 6

4 2 5

8 7

, then

you would end up with T =

1 2 3 6

4 7 5

8 9
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(2) If the tableau is not yet standard, then there must be two

adjacent entries in the same row where the left is greater than

the right. If there are more than two such entries, we can just

apply the algorithm to the top-most and then left-most pair

for consistency. If, for instance, T =

1 2 3 6

4 7 5

8 9

we focus

on the pair 7 and 5. We isolate all the entries below the left

out-of-order entry and above the right out-of-order entry.

For example, we isolate 3, 5, 7 and 9. We call the entries

below the left-out-of-order entry A and the entries above the

right out-of-order entry B.
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(3) Calculate the Garnir element, denoted by gA,B , which is

just the signed sum of all permutations of the isolated entries

that keep both subsets A and B without column ascent,

gA,B = ∑
π

sgn(π)π. For instance, in the above example

gA,B = (1)− (57) + (579)− (375) + (37)(59)− (3795).
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Lemma 5.5. Let T be a tableau and gA,B be a corresponding

Garnir element. Then, gA,B ? eT = ∑
π

(sgn(π)π ? eT ) = 0.

Proof.

Consider ∑
σ∈SA∪B

sgn(σ)σ ?{T} where SA∪B is the

permutations of A and B . For all σ , there exist two adjacent

elements a and b, and a transposition of the two elements

denoted (ab). Then, (ab)? (σ ?{T}) = σ ?{T} and since

sgn((ab)◦σ)(ab)◦σ ?{T}=−sgn(σ)(ab)◦σ ?{T} and

sgn(σ)σ ?{T}=sgn(σ)(ab)◦σ ?{T} are both terms in the

summand, the whole expression cancels to 0.
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Now factor out the elements of the column stabilizer,

∑
σ∈SA∪B

sgn(σ)σ ?{T}= ∑
π

∑
σ∈C(T )

sgn(π ◦σ)π ◦σ ?{T}.

For the remaining sum, we only need to choose one

representative for each possible composition of the columns. If

we choose each so that the columns are in descending order,

then we get back gA,B ? eT ,

∑
π

∑
σ∈C(T )

sgn(π ◦σ)π ◦σ ?{T}= ∑
π

sgn(π)π ?

(
∑

σ∈C(T )

sgn(σ)σ ?{T}

)
= gA,B ? eT

= 0.
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Theorem 5.6. The standard polytabloids span the

corresponding Specht module.

Proof.

If gA,B = (1)±π1±π2± ...±πk then we can multiply by eT on

the right to get gA,B ? eT = eT ±π1 ? eT ±2 ?eT ± ...±πk ? eT .

Therefore, by the previous proposition,

eT =±π1 ? eT ±π2 ? eT ± ...±πk ? eT and we have eT written

in terms of other polytabloids to which we can reapply the

algorithm. These other polytabloids are somehow “closer” to

the polytabloids associated with the standard tableaux, which

we could formalize by defining a partial ordering on the rows.

By induction, eT is spanned by the standard polytabloids.
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Theorem 5.1

The polytabloids associated with the standard Young tableaux

form a basis for the corresponding Specht module:

S (λ ) = {c1eT1
+ + ckeTk

|c1, ...,ck ∈ C ,T1, ...,Tk} are standard

tableaux of shape λ .

Proof

By Theorem 5.4 and Theorem 5.6, the polytabloids associated

with the standard Young tableaux a linearly independent and

span, so they form a basis.

We have shown that the Specht modules give us all the

irreducible representations of Sn. We conclude by calculating

the dimensions of these representations
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Definition 5.7 The hook-length of a given entry indexed i , j

in a Young tableau T of shape λ , denoted hi ,j , is the number

of entries to the right of i , j in row i plus the number of

entries underneath i , j in column j plus 1.

Visually, if λ = , then h1,2 is computed by

counting dots in the following diagram:

· · ·
·
·
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The tableau

6 5 3 1

4 3 1

2 1

has hi ,j as its i , j th entry. Using

this definition of the hook-length, we have the following

formula, which counts the number of standard Young tableaux

for a given shape λ of size n:

dim(S (λ )) =
n!

Πi ,jhi ,j

The dimension of a representation corresponding to a partition

λ is given by the standard Young tableaux of that shape,

which we calculate using the last equation.
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Example

Take, for instance, S3. We have corresponding tableaux shapes

, and . Then, by the hook-length

formula, we have that the dimension of the irreducible

representations corresponding to these shapes are 1, 2, and 1,

respectively, which agrees with the discussion so far.
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