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Introduction | Algebras

Definition (Algebra).

An algebra over a field F is a vector space A over F together with a bilinear map,

A× A→ A, (x, y) 7→ xy.

Examples.
• gl(V) (the set of linear maps from V to V) with addition an composition.

• H the algebra of quaternions.

• F is a commutative algebra of dimension 1.
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Introduction | Lie Algebras

Definition (Lie Algebra).

Let F be a field. A Lie algebra L over F is an algebra whose bilinear operation Lie bracket

L× L→ L, (x, y) 7→ [x, y],

satisfies the following properties:

[x, x] = 0 for all x ∈ L, (L1)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. (L2)

Condition (L2) is known as the Jacobi identity. As the Lie bracket [−,−] is
bilinear, we have

0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].

Hence condition (L1) implies

[x, y] = −[y, x] for all x, y ∈ L. (L1’)

We also see that (L1′) =⇒ (L1) if char(F) 6= 2.

4



Introduction | Lie Algebras

Examples.
• R3 with the cross product (x, y) 7→ x ∧ y forms a Lie algebra denoted by R3

∧.

• Any vector space V has a Lie bracket defined [x, y] = 0 for all x, y ∈ V. This
is the abelian Lie algebra structure on V. In particular F is a 1-dimensional
Lie algebra.

• If we define [x, y] := x ◦ y − y ◦ x in gl(V), then this is the Lie algebra called
the general linear algebra.

• In general, if we have an associative algebra A over F, then we may define a
new bilinear opereation [x, y] = xy − yx. A together with [−,−] is a Lie
algebra.
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Introduction | Homomorphisms

Definition (Homomorphism).

If L1 and L2 are Lie algebras over F, we say that a linear map ϕ : L1 → L2 is a
homomorphism if

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L1.

Notice that in the above equation the first Lie bracket is taken in L1 and the
second Lie bracket is taken in L2. We say that ϕ is a isomorphism if it is a
bijective homomorphism.

Example.
The adjoint homomorphism ad : L→ gl(L) is defined by

(ad x)(y) := [x, y] ∀ y ∈ L.

The linearity of ad and (ad x) ∈ gl(L) both follow from the bilinearity of the Lie
bracket, and

ad([x, y]) = ad x ◦ ad y − ad y ◦ ad x

is equivalent to the Jacobi identity.
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Introduction | Subalgebras and Ideals

Definition (Lie subalgebra).

A Lie subalgebra of L is defined to be a vector subspace K ⊆ L such that

[x, y] ∈ K for all x, y ∈ K.

Examples.
• Let sl(n,F) be the subspace of gl(n,F) consisting of all matrices of trace 0.

For arbitrary square matrices x and y, the matrix xy − yx has trace 0, so
[x, y] = xy − yx defines a Lie algebra structure on sl(n,F).

• Let b(n,F) be the upper triangular matrices in gl(n,F). This is a Lie algebra
with the same Lie bracket as gl(n,F).

• If ϕ : L1 → L2 is a homomorphism, then imϕ is a Lie subalgebra of L2.
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Introduction | Subalgebras and ideals

Definition (Derivation).

Let A be an algebra over F, a derivation of A is a linear map D : A→ A such that

D(ab) = aD(b) + D(a)b ∀ a, b ∈ A.

Example.

• The map (ad x) : L→ L is a derivation of L since by the Jacobi identity

(ad x)[y, z] = [x, [y, z]] = [y, [x, z]] + [[x, y], z] = [y, (ad x)z] + [(ad x)y, z].

Der A, the set of derivations of A is closed under addition and scalar
multiplication, and contains the zero map. Hence Der A is a vector subspace of
gl(A).

Moreover it can be proven that if D and E are derivations [D, E] = D ◦ E − E ◦ D is
also a derivation, thus Der A is a Lie subalgebra of gl(A).
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Introduction | Subalgebras and Ideals

Definition (Ideal).

An ideal of a Lie algebra L is a subspace I of L such that

[x, y] ∈ I for all x ∈ L, y ∈ I.

Condition (L1’) implies we do not need to distinguish between left ideal and right
ideals.

Examples.
• The Lie algebra L is itself an ideal of L. At the other extreme, {0} is an ideal

of L. These are the trivial ideals of L.

• If ϕ : L1 → L2 is a homomorphism, then kerϕ is an ideal of L1.

• sl(n,F) is an ideal of gl(n,F).

• Let Z(L) := {x ∈ L : [x, y] = 0 ∀y ∈ L}. This is called the centre of L and it is
an ideal since ker ad = Z(L). Moreover Z(L) = L if and only if L is abelian.
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Introduction | Subalgebras and Ideals

It is clear that every ideal is a subalgebra, but not every subalgebra is an ideal, as
seen in the following counterexample:

Counterexample.
• b(2,F) is a subalgebra of gl(2,F), but note that

e11 =

(
1 0
0 0

)
, e21 =

(
0 0
1 0

)
.

[e21, e11] = e21 /∈ b(2,F).
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Ideals and Homomorphisms | Constructions with Ideals

Suppose that I and J are ideals of a Lie algebra L. There are several ways we can
construct new ideals from I and J.
Examples.
• I ∩ J is a subspace of L, and [x, y] ∈ I ∩ J for x ∈ L and y ∈ I ∩ J, since they

are each individually an ideal, then I ∩ J is an ideal of L.

• I+ J is a subspace of L. Let v ∈ L and u = i+ j ∈ I+ J, then

[v, u] = [v, i+ j] = [v, i] + [v, j] ∈ I+ J.

Therefore I+ J is an ideal of L.

• The product of ideals defined by [I, J] = span{[x, y] : x ∈ I, y ∈ J} is by
definition a subspace. To show it is an ideal of L, let x ∈ I, y ∈ J and u ∈ L,
then the Jacobi identity gives

[u, [x, y]] + [x, [y, u]] + [y, [u, x]] = 0 ⇐⇒ [u, [x, y]] = [x, [u, y]] + [[u, x], y]
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Ideals and Homomorphisms | Constructions and Ideals

Where [u, y] ∈ J and [u, x] ∈ I, hence [x, [u, y]], [[u, x], y] ∈ [I, J] and their sum
belongs to [I, J].
Let t ∈ [I, J], then, for xi ∈ I and yi ∈ J, we may write

t =
∑

ci[xi, yi]

where the ci are scalars. Now, for any u ∈ L, we have

[u, t] =
[
u,
∑

ci[xi, yi]
]
=
∑

ci [u, [xi, yi]]

hence [u, t] ∈ [I, J], so [I, J] is an ideal of L.

In the construction of [I, J], the particular case I = J = L is denoted as L′ = [L, L].
This is of course an ideal, but is usually referred to as the derived algebra of L.

Examples.

• sl(2,C)′ =sl(2,C)
• If L is abelian, then L′ = 0.
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Ideals and Homomorphisms | Quotient Algebras

If I is an ideal of the Lie algebra L, then I is a vector subspace of L, and so we
may consider the quotient vector space L/I = {z+ I : z ∈ L}.

A Lie bracket on L/I can be defined by

[w + I, z+ I] := [w, z] + I w, z ∈ L.

To be sure that the Lie bracket is well defined we must check that [w, z] + I does
not depend on the particular coset representatives w and z.

Suppose w + I = w′ + I and z+ I = z′ + I. Then w′ − w ∈ I and z′ − z ∈ I. By
bilinearity of the Lie bracket in L,

[w′, z′] = [w + w′ − w, z′]
= [w, z′] + [w′ − w, z′]
= [w, z+ z′ − z] + [w′ − w, z′]
= [w, z] + [w, z′ − z] + [w′ − w, z′].

Thus [w′ + I, z′ + I] = [w, z] + I.
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Ideals and Homomorphisms | Isomorphis theorems

Definition (Quotient Algebra).

If I is an ideal of a Lie Algebra L, then L/I is a Lie algebra with Lie bracket

[w + I, z + I] = [w, z] + I.

Theorem (Isomorphism theorems)

(a) Let ϕ : L1 → L2 be a homomorphism of Lie algebras, Then kerϕ is an ideal of L1 and
imϕ is a subalgebra of L2 , and

L1/ kerϕ ∼= imϕ.

(b) If I and J are ideals of a Lie algebra, then

(I + J)/J ∼= I/(I ∩ J).

(c) Suppose that I and J are ideals of a Lie algebra L such that I ⊂ J. Then J/I is an ideal
of L/I and

(L/I)/(J/I) ∼= L/J.
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Low-Dimensional Lie Algebras

We begin this section to identify how many non-isomorphic Lie algebras there
are and what approaches can be used to classify them. We will look at Lie
algebras of dimensions 1, 2 and 3.

Abelian Lie algebras are easily understood, as two abelian Lie algebras of the
same dimension over the same field are isomorphic, henceforth we consider
non-abelian Lie algebras.

If L is a non-abelian Lie algebra, then its derived algebra L′ is non-zero and its
centre Z(L) is a proper ideal.

It is clear that any 1-dimensional Lie algebra is abelian since
[αx, βx] = αβ[x, x] = 0.
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Low-Dimensional Lie Algebras | Dimension 2

For dimension 2, we have the following theorem.

Theorem (Classification of two-dimensional Lie algebras)

Let F be any field. Up to isomorphism there is a unique two-dimensional non-abelian Lie
algebra over F. This Lie algebra has a basis {x, y} such that its Lie bracket is described by
[x, y] = x. The centre of this Lie algebra is 0.

Proof

Suppose L is a non-abelian Lie algebra of dimension 2 over F, then L′ cannot be more than
1-dimensional, since if {x, y} is a basis of L, then L′ is spanned by [x, y]. We conclude it is
1-dimensional, as it is non-zero, otherwise L would be abelian.
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Low-Dimensional Lie Algebras | Dimension 2

Take a non-zero element x ∈ L′ and extend it to a vector space basis {x, ȳ} of L, then we
have a non-zero element [x, ȳ] ∈ L′ , otherwise L would be abelian, thus we may write
[x, ȳ] = αx. If we replace y := α−1ȳ, the structure of L is preserved and we obtain

[x, y] = x.

It remains to verify that this bracket satisfies the Jacobi identity. Let x, y, z ∈ L, where
z = ax + by

[x, [y, ax + by]]+[y, [ax + by, x]] + [ax + by, [x, y]]

= [x, [y, ax] + [y, by]] + [y, [ax, x] + [by, x]] + [ax, [x, y]] + [by, [x, y]]

= [x, [y, ax]] + [y, [by, x]] + [ax, x] + [by, x]

= [x,−a[x, y]] + [y,−b[x, y]]− b[x, y]

= −a[x, x]− b[y, x]− b[x, y]

= 0.
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Low-Dimensional Lie Algebras | Dimension 3

If L is a non-abelian 3-dimensional Lie algebra over a field F, then we know only
that the derived algebra L′ is non-zero. It might be of dimensions 1,2 or 3.

We will only consider when it has dimension 1. We will try to relate Z(L) to L′ to
obtain further information on the classification of such Lie algebra.
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Low-Dimensional Lie Algebras | The Heisenberg Algebra

Theorem (The Heisenberg Algebra)

There is a unique 3-dimensional Lie algebra L such that L′ is 1-dimensional and L′ ⊂ Z(L).

Moreover it has a basis f, g, z, where [f, g] = z ∈ Z(L).

Proof

Take any f, g ∈ L such that [f, g] is non-zero; since L′ is 1-dimensional, the commutator
[f, g] spans L′ and because L′ ⊂ Z(L), [f, g] commutes with all elements of L.
Set z := [f, g], then f, g, z form a basis of L and by bilinearity, all other Lie brackets are
already fixed.
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Low-Dimensional Lie Algebras | dim L =3, dim L′=1, L′ 6⊂ Z(L)

It only remains to investigate the case where L′ is 1-dimensional and L′ 6⊂ Z(L).
To do this we’ll need the following result

Lemma

Z(L1 ⊕ L2) = Z(L1)⊕ Z(L2) and (L1 ⊕ L2)′ = L′1 ⊕ L′2 , where

[(x1, x2), (y1, y2)] := ([x1, y1], [x2, y2]).

Proof

Note that

(x1, x2) ∈ Z(L1 ⊕ L2) ⇐⇒ [(x1, x2), (y1, y2)] = 0 ∀ y ∈ L

⇐⇒ ([x1, y1], [x2, y2]) = 0 ∀ y1 ∈ L1, y2 ∈ L2
⇐⇒ x1 ∈ Z(L1) and x2 ∈ Z(L2)

⇐⇒ (x1, x2) ∈ Z(L1)⊕ Z(L2)
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Low-Dimensional Lie Algebras | dim L =3, dim L′=1, L′ 6⊂ Z(L)

(x1, x2) ∈ (L1 ⊕ L2)′ ⇐⇒ (x1, x2) ∈ span{[a, b] : a, b ∈ L1 ⊕ L2}

⇐⇒ (x1, x2) =
∑

αk[ak, bk]

⇐⇒ (x1, x2) =
∑

αk[(ak,1, ak,2), (bk,1, bk,2)]

⇐⇒ (x1, x2) =
∑

αk([ak,1, bk,1], [ak,2, bk,2])

⇐⇒ (x1, x2) =
(∑

αk[ak,1, bk,1],
∑

αk[ak,2, bk,2]
)

⇐⇒ x1 ∈ L′1 and x2 ∈ L′2
⇐⇒ (x1, x2) ∈ L′1 ⊕ L′2
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Low-Dimensional Lie Algebras | dim L =3, dim L′=1, L′ 6⊂ Z(L)

We’ll first construct a Lie algebra with the desired properties by using the above
lemma.

Consider L = L1 ⊕ L2, where L1 is 2-dimensional and non-abelian (the Lie algebra
descirbed by [x, y] = x) and L2 is 1-dimensional. By the lemma

L′ = L′1 ⊕ L′2 = L′1

hence L′ is 1-dimensional. Moreover, Z(L) = Z(L1)⊕ Z(L2) = L2, therefore L′ is
not contained in Z(L).
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Low-Dimensional Lie Algebras | dim L =3, dim L′=1, L′ 6⊂ Z(L)

Theorem

Let F be a field. There is a unique 3-dimensional Lie algebra over F such that L′ is
1-dimensional and L′ is not contained in Z(L). This Lie algebra is the direct sum of the
2-dimensional non-abelian Lie algebra with the 1-dimensional Lie algebra.

Proof

Pick a non-zero element x ∈ L′ 6⊂ Z(L), thus there must exist y ∈ L such that [x, y] 6= 0,
then they are linearly independent. By the Theorem of Classification of two-dimensional
Lie algebras, we may assume that [x, y] = x. We then extend {x, y} to a basis {x, y,w} of
L. Since x spans L′ , there exists scalars α, β such that

[x,w] = αx, [y,w] = βx.
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Low-Dimensional Lie Algebras | dim L =3, dim L′=1, L′ 6⊂ Z(L)

We claim that L contains a non-zero central element z which is not in the span of x and y.
For z = λx + µy + νw ∈ L,

[x, z] = [x, λx + µy + νw] = µx + ναx,

[y, z] = [y, λx + µy + νw] = −λx + νβx.

Taking λ = β, µ = −α and ν = 1 we have [x, z] = [y, z] = 0 and z is not in the space
spanned by x and y. Hence L =span{x, y}⊕span{z} as desired.
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Low-Dimensional Lie Algebras | sl(2,C)

We’ll end by studing some properties of the important Lie algebra sl(2,C) (the
2× 2 matrices with complex entries and zero trace).

Theorem

gl(2,C)/ sl(2,C) ∼= C

Proof

Notice that tr : gl(2,C)→ C is a Lie algebra homomorphism, for if x, y ∈ gl(2,C), then

tr[x, y] = tr(xy − yx) = tr xy − tr yx = 0

so tr[x, y] = [tr x, tr y] = 0.
Clearly ker tr = sl(2,C). By the first isomorphism theorem we have

gl(2,C)/ sl(2,C) ∼= C.
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Low-Dimensional Lie Algebras | sl(2,C)

Theorem

The following matrices form a basis of sl(2,C).

e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
.

Proof

Notice that

αe + βf + γh =

(
γ α

β −γ

)
so the list spans sl(2,C), and since it is linearly independent, it is a basis.

Moreover, we have

[e, f] = h, [h, f] = −2f, [h, e] = 2e.
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Low-Dimensional Lie Algebras | sl(2,C)

Theorem

sl(2,C) has no non-trivial ideals.

Proof

First note that because [h, f] = −2f and [h, e] = 2e, it suffices to show that if I 6= 0, then
h ∈ I.

Suppose I 6= 0, and let x = αe + βf + γh be a non-zero element of I. Now consider

(ad h)(x) = [h, αe + βf + γh] = 2αe− 2βf

(ad h)2(x) = [h, 2αe− 2βf] = 4αe + 4βf

Since I and ideal, (ad h)2(x) ∈ I, thus γh = x− 1
4 (ad h)2(x) is also in I. Hence γ = 0 or

h ∈ I.

If γ = 0, then (ad e)(x) = βh, again β = 0 or h ∈ I. If γ = β = 0, then (ad f)(x) = −αh.
Since x is non-zero, we are done.
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Low-Dimensional Lie Algebras | sl(2,C)

Corollary

Z(sl(2C)) = 0, sl(2,C)′ = sl(2,C).

Proof

Both Z(sl(2C)) and sl(2,C)′ are ideals of sl(2,C), since sl(2,C) is not abelian
Z(sl(2C)) 6= sl(2,C), thus Z(sl(2C)) = 0 and because sl(2,C)′ 6= 0, sl(2,C)′ = sl(2,C).

It also can be shown that sl(2,C) is the unique 3-dimensional Lie algebra over C
such that L = L′.
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